EfficientNet for Medical Image Classification: Performance vs. Efficiency in Skin Cancer Detection
(1) Department of Informatics, Universitas Muhammadiyah Semarang, Semarang, Indonesia
(2) Department of Informatics, Universitas Muhammadiyah Semarang, Semarang, Indonesia
(3) Department of Informatics, Universitas Muhammadiyah Semarang, Semarang, Indonesia
(4) Department of Informatics, Universitas Muhammadiyah Semarang, Semarang, Indonesia
(5) Department of Mathematics and Computer Sciences, First Technical University, Ibadan, Oyo State, Nigeria
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Anwar, R. S. S. (2023). EfficientNet Algorithm for Classification of Different Types of Cancer. Artificial Intelligence and Applications. https://doi.org/10.47852/bonviewAIA32021004
Goceri, E., & Karakas, A. A. (2020). Comparative evaluations of CNN based networks for skin lesion classification. 14th International Conference on Computer Graphics, Visualization, Computer Vision and Image Processing (CGVCVIP), Zagreb, Croatia, 1–6.
Guergueb, T., & Akhloufi, M. A. (2022). Skin Cancer Detection using Ensemble Learning and Grouping of Deep Models. International Conference on Content-Based Multimedia Indexing, 121–125. https://doi.org/10.1145/3549555.3549584
He, K., Gan, C., Li, Z., Rekik, I., Yin, Z., Ji, W., Gao, Y., Wang, Q., Zhang, J., & Shen, D. (2023). Transformers in medical image analysis. Intelligent Medicine, 3(1), 59–78. https://doi.org/10.1016/j.imed.2022.07.002
Hellín, C. J., Olmedo, A. A., Valledor, A., Gómez, J., López-Benítez, M., & Tayebi, A. (2024). Unraveling the Impact of Class Imbalance on Deep-Learning Models for Medical Image Classification. Applied Sciences, 14(8), 3419. https://doi.org/10.3390/app14083419
Li, Z., Koban, K. C., Schenck, T. L., Giunta, R. E., Li, Q., & Sun, Y. (2022). Artificial Intelligence in Dermatology Image Analysis: Current Developments and Future Trends. Journal of Clinical Medicine, 11(22), 6826. https://doi.org/10.3390/jcm11226826
Parker, E. R. (2021). The influence of climate change on skin cancer incidence – A review of the evidence. International Journal of Women’s Dermatology, 7(1), 17–27. https://doi.org/10.1016/j.ijwd.2020.07.003
Ragupathi, T., Govindarajan, M., & Priyaradhikadevi, T. (2022). Class Imbalance Handling with Deep Learning Enabled IoT Healthcare Diagnosis Model. Intelligent Automation & Soft Computing, 34(2), 1351–1366. https://doi.org/10.32604/iasc.2022.025756
Ravi, V., Narasimhan, H., & Pham, T. D. (2021). EfficientNet-Based Convolutional Neural Networks for Tuberculosis Classification (pp. 227–244). https://doi.org/10.1007/978-3-030-69951-2_9
Roy, D., Roy, A., & Roy, U. (2024). Learning from Imbalanced Data in Healthcare: State-of-the-Art and Research Challenges (pp. 19–32). https://doi.org/10.1007/978-981-99-8853-2_2
Wang, J., Zhu, H., Wang, S.-H., & Zhang, Y.-D. (2021). A Review of Deep Learning on Medical Image Analysis. Mobile Networks and Applications, 26(1), 351–380. https://doi.org/10.1007/s11036-020-01672-7
Article Metrics
Abstract view : 208 timesPDF - 8 times
DOI: https://doi.org/10.26714/jichi.v5i2.14338
Refbacks
- There are currently no refbacks.
____________________________________________________________________________
Journal of Intelligent Computing and Health Informatics (JICHI)
ISSN 2715-6923 (print) | 2721-9186 (online)
Organized by
Department of Informatics
Faculty of Engineering
Universitas Muhammadiyah Semarang
W : https://jurnal.unimus.ac.id/index.php/ICHI
E : jichi.informatika@unimus.ac.id, ahmadilham@unimus.ac.id