Enhancing Early Diagnosis of Heart Disease: A Comparative Study of K-NN and Naive Bayes Classifiers Using the UCI Heart Disease Dataset
(1) Department of Informatics, Universitas Multimedia Nusantara, Banten, Indonesia
(2) Department of Informatics Engineering, Universitas Muhammadiyah Tangerang, Banten, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
Althnian, A., AlSaeed, D., Al-Baity, H., Samha, A., Dris, A. Bin, Alzakari, N., Abou Elwafa, A., & Kurdi, H. (2021). Impact of Dataset Size on Classification Performance: An Empirical Evaluation in the Medical Domain. Applied Sciences, 11(2), 796. https://doi.org/10.3390/app11020796
Bhatt, C. M., Patel, P., Ghetia, T., & Mazzeo, P. L. (2023). Effective Heart Disease Prediction Using Machine Learning Techniques. Algorithms, 16(2), 88. https://doi.org/10.3390/a16020088
Gupta, A., Kumar, L., Jain, R., & Nagrath, P. (2020). Heart Disease Prediction Using Classification (Naive Bayes). In Lecture Notes in Networks and Systems (LNNS,volume 121) (pp. 561–573). https://doi.org/10.1007/978-981-15-3369-3_42
Kemenkes, R. I. (2014). Situasi kesehatan jantung. Pusat Data Dan Informasi Kementerian Kesehatan RI, 3.
Lewandowicz, B., & Kisiała, K. (2024). Comparison of Support Vector Machine, Naive Bayes, and K-Nearest Neighbors Algorithms for Classifying Heart Disease. In Communications in Computer and Information Science (pp. 274–285). https://doi.org/10.1007/978-3-031-48981-5_22
Maheswari, B. U., Guhan, T., Britto, C. F., Sheeba, A., Rajakumar, M. P., & Pratyush, K. (2023). Performance analysis of classifying the breast cancer images using KNN and naive bayes classifier. INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES AND APPLICATIONS (ICSTA 2022), 020012. https://doi.org/10.1063/5.0164139
Rajput, D., Wang, W.-J., & Chen, C.-C. (2023). Evaluation of a decided sample size in machine learning applications. BMC Bioinformatics, 24(1), 48. https://doi.org/10.1186/s12859-023-05156-9
Schonlau, M. (2023). The Naive Bayes Classifier. In Applied Statistical Learning (pp. 143–160). https://doi.org/10.1007/978-3-031-33390-3_8
Shah, D., Patel, S., & Bharti, S. K. (2020). Heart Disease Prediction using Machine Learning Techniques. SN Computer Science, 1(6), 345. https://doi.org/10.1007/s42979-020-00365-y
Somani, S., van Buchem, M. M., Sarraju, A., Hernandez-Boussard, T., & Rodriguez, F. (2023). Artificial Intelligence–Enabled Analysis of Statin-Related Topics and Sentiments on Social Media. JAMA Network Open, 6(4), e239747. https://doi.org/10.1001/jamanetworkopen.2023.9747
Sravani, S., & Karthikeyan, P. R. (2023). Detection of cardiovascular disease using KNN in comparison with naive bayes to measure precision, recall and f-score. Contemporary Innovations in Engineering and Management, 030002. https://doi.org/10.1063/5.0177014
Ting, K. M. (2011). Confusion Matrix. In Encyclopedia of Machine Learning (pp. 209–209). Springer US. https://doi.org/10.1007/978-0-387-30164-8_157
Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm validation with a limited sample size. PLOS ONE, 14(11), e0224365. https://doi.org/10.1371/journal.pone.0224365
Wickramasinghe, I., & Kalutarage, H. (2021). Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Computing, 25(3), 2277–2293. https://doi.org/10.1007/s00500-020-05297-6
Article Metrics
Abstract view : 197 timesPDF - 25 times
DOI: https://doi.org/10.26714/jichi.v5i1.11251
Refbacks
- There are currently no refbacks.
____________________________________________________________________________
Journal of Intelligent Computing and Health Informatics (JICHI)
ISSN 2715-6923 (print) | 2721-9186 (online)
Organized by
Department of Informatics
Faculty of Engineering
Universitas Muhammadiyah Semarang
W : https://jurnal.unimus.ac.id/index.php/ICHI
E : jichi.informatika@unimus.ac.id, ahmadilham@unimus.ac.id