Comparison of Deep Neural Network Architectural Models for Predicting Tourist Visits to Bali during the Pandemic Period

Nyoman Purnama(1*)


(1) STMIK PRIMAKARA
(*) Corresponding Author

Abstract


Tourism plays a critical role in any economy as it provides a source of income for communities. Bali, one of Indonesia's provinces, holds significant potential in the tourism industry, with a majority of its population employed in this sector. However, fluctuations in tourist visits can pose challenges when creating policies to address issues in the field. Therefore, forecasting is necessary to anticipate post-pandemic tourist arrival patterns to ensure a smooth tourism recovery process. Forecasting is a vital tool that assists in making sound decisions. In this study, we utilized three forecasting methods: Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU). We took a comparative approach, using these three deep neural network architectures to predict tourist visits to Bali during the pandemic. We tested the architectural models using datasets from Badan Pusat Statistik (BPS) and evaluated the model's performance using RMSE and MAE. The results showed that the LSTM model outperformed the CNN and GRU models, with an RMSE value of 0,329036 and MAE value of 0,285874. Based on the study, we can conclude that the LSTM model performed better and can predict tourist arrivals in Bali with reasonable accuracy

Keywords


CNN, GRU, LSTM, Predictions, Tourism

Full Text:

PDF

References


Arissintaa, I. O., Sulistiyawatib, I. D., & Kharisudin, D. K. I. (2022). Pemodelan Time Series untuk Peramalan Web Traffic Menggunakan Algoritma Arima, LSTM, dan GRU. 5, 693–700.

Ashari, M. L., & Sadikin, M. (2020). Prediksi Data Transaksi Penjualan Time Series Menggunakan Regresi Lstm. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 9(1), 1. https://doi.org/10.23887/janapati.v9i1.19140

Chen, K., Zhou, Y., & Dai, F. (2015). A LSTM-based method for stock returns prediction: A case study of China stock market. 2015 IEEE International Conference on Big Data (Big Data), 2823–2824. https://doi.org/10.1109/BigData.2015.7364089

Hamoudi, H., & Elseifi, M. A. (2018). Stock Market Prediction using CNN and LSTM.

Herawati, B. C. (n.d.). Peramalan Kunjungan Wisatawan Mancanegara ke Nusa Tenggara Barat dengan Pendekan Box-Jenkins-Model ARIMA. Osf.Io, 1–11. https://osf.io/6ug5v/download

Juliansyah, S., Laksito, A. D., 허원호, Lionel, D., Adipranata, R., Setyati, E., Naufal, M. F., Shania, S., Millenia, J., Axel, S., Soebroto, J. T., Febrina, P., Mercifia, M., Putra, A. I., Santika, R. R., Hsu, K.-C., Chou, S.-Y., Yang, Y.-H., Chi, T.-S., … Rizal, A. (2021). Klasifikasi Citra Buah Pir Menggunakan Convolutional Neural Networks. Jurnal Infra Petra, 7(1), 489–495. https://doi.org/10.22441/incomtech.v11i1.10185

Khalis Sofi, Aswan Supriyadi Sunge, Sasmitoh Rahmad Riady, & Antika Zahrotul Kamalia. (2021). PERBANDINGAN ALGORITMA LINEAR REGRESSION, LSTM, DAN GRU DALAM MEMPREDIKSI HARGA SAHAM DENGAN MODEL TIME SERIES. SEMINASTIKA, 3(1), 39–46. https://doi.org/10.47002/seminastika.v3i1.275

Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. http://arxiv.org/abs/1412.6980

Lu, W., Li, J., Li, Y., Sun, A., & Wang, J. (2020). A CNN-LSTM-based model to forecast stock prices. Complexity, 2020. https://doi.org/10.1155/2020/6622927

Muliani Harahap, A., & Fitrie, S. (2021). IMPLEMENTASI GATED RECURRENT UNIT (GRU) UNTUK PREDIKSI HARGA SAHAM BANK KONVENSIONAL DI INDONESIA. JISTech (Journal of Islamic Science and Technology) JISTech, 6(2), 42–49. http://jurnal.uinsu.ac.id/index.php/jistech

Oxaichiko Arissinta, I., Dwi Sulistiyawati, I., & Kurnianto Iqbal Kharisudin, D. (2022). Pemodelan Time Series untuk Peramalan Web Traffic Menggunakan Algoritma Arima. Prosiding Seminar Nasional Matematika, 5, 693–700. https://journal.unnes.ac.id/sju/index.php/prisma/

Septiana, T., Puspita, N., Fikih, M. al, & Setyawan, N. (2020). Face Mask Detection Covid-19 Using Convolutional Neural Network ( Cnn ). 27–32.

Sukraini, T. T. (2017). Peramalan Kunjungan Wisatawan Ke Uluwatu Dengan Menggunakan Model Autoregressive Integrated Moving Average. Matrix Jurnal Manajemen Teknologi Dan Informatika, 6(1), 47.

Surtiningsih, L., Furqon, M. T., & Adinugroho, S. (2018). Prediksi Jumlah Kunjungan Wisatawan Mancanegara Ke Bali Menggunakan Support Vector Regression dengan Algoritma Genetika. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(8), 2578–2586. http://j-ptiik.ub.ac.id

Zhang, Y., Yuan, H., Wang, J., & Zhang, X. (n.d.). YNU-HPCC at EmoInt-2017: Using a CNN-LSTM Model for Sentiment Intensity Prediction. http://ie.com


Article Metrics

Abstract view : 277 times
PDF - 67 times

DOI: https://doi.org/10.26714/jichi.v3i2.11168

Refbacks

  • There are currently no refbacks.


____________________________________________________________________________
Journal of Intelligent Computing and Health Informatics (JICHI)
ISSN 2715-6923 (print) | 2721-9186 (online)
Organized by
Department of Informatics
Faculty of Engineering
Universitas Muhammadiyah Semarang

W : https://jurnal.unimus.ac.id/index.php/ICHI
E : jichi.informatika@unimus.ac.id, ahmadilham@unimus.ac.id

View My Stats