A Linear Regression Model for Deploying a Cognitive Web for an Inventory Prediction System

Yenni Fatman(1), Sali Alas Majapahit(2*), Muammar Ramadhan(3)


(1) Universitas Islam Nusantara
(2) Universitas Pssundan
(3) Universitas Islam Nusantara
(*) Corresponding Author

Abstract


Inventory management plays a crucial role in the sales system as it indirectly impacts customer satisfaction. Inaccurate determination of the quantity of goods to be purchased often leads to unstable stock circulation in the warehouse. The numerous factors influencing procurement decisions pose challenges for managers. Several initiatives have been undertaken to maintain optimal stock levels to ensure availability when required. In this study, we developed a linear regression model to estimate the inventory for the upcoming one-month period. The selection of linear regression was motivated by its ability to forecast future trends. The research involved creating a web application that utilized sales data from the previous six months, focusing on examples of products sold in a store. The objective of the application is to assist store owners in making informed decisions regarding stock replenishment for the next period. By doing so, they can fulfill customer demands without excessive inventory accumulation, while considering the limitations of storage capacity.

 


Keywords


Inventory; Prediction; Linear Regression; Web Application

Full Text:

PDF

References


Tamaji, Yoga Alif Kurnia Utama, Josie Sidharta. (2022). Artificial Neural Network Using Backpropagation Method for Rainfall Prediction. Jurnal Ilmiah Telekomunikasi, Kendali dan Elektronika Terapan, vol. 10, no. 1, April 2022. https://doi.org/10.34010/telekontran.v10i1.7409

Tresna Maulana Fahrudin, Rysda Putra Ambariawan, Made Kamisutara. (2021). Short Term Electricity Demand Forecasting of The Automobile Sales Using Least Square, Single Exponential Smoothing and Double Exponential Smoothing. International Journal of Business Studies, vol. 4, no. 2 (2021): December 2021. https://doi.org/10.9744/ijbs.4.2.122-130

T. Indarwati, T. Irawati, dan E. Rimawati. (2019). “Penggunaan metode linear regression untuk prediksi penjualan smartphone,” J. Teknol. Inf. Dan Komun., vol. 6, no. 2, hlm. 2–7. https://doi.org/10.30646/tikomsin.v6i2.369

Hidayatus Sibyan, Caesar Dwi Kartika, M. Fuat Asnawi. (2022). Aplikasi Prediksi Persediaan Barang Pada Toko Gudang Acc Wonosobo Dengan Metode Double Exponential Smoothing Berbasis Web. ournal of Information System and Computer, vol. 2 no. 1 (2022): Juli 2022. https://doi.org/10.34001/jister.v1i2.272

Heizer, Jay dan Barry Render. (2009). Manajemen Operasi Buku I Edisi 9. Jakarta : Salemba empat.

Chatterjee,S. dan Ali, S.H. (2006). Regression Analysis by Example Fourth Edition. New York : John Willey and Sons Inc.

Donald E.Kieso, Jerry J.Weygandt, Terry D.Warfield. (2018). Akuntansi keuangan menengah. Jakarta :Salemba. Ikatan Akuntansi Indonesia. (2022). Standar Akuntansi Keuangan. Salemba Jakarta.

Setia, S., Jyoti, V., & Duhan, N. (2020). HPM : A Hybrid Model for User’s Behavior Prediction Based on N-Gram Parsing and Access Logs. Scientific Programming.

Karzan W, Dayang N.A. (2019). Intelligent Web Applications as Future Generation of Web Applications. International Journal of Software Engineering and it's Application. Scintific Journal of Informatics. vol. 6, no. 2. https://doi.org/10.15294/sji.v6i2.19297


Article Metrics

Abstract view : 231 times
PDF - 52 times

DOI: https://doi.org/10.26714/jichi.v4i1.11258

Refbacks

  • There are currently no refbacks.


____________________________________________________________________________
Journal of Intelligent Computing and Health Informatics (JICHI)
ISSN 2715-6923 (print) | 2721-9186 (online)
Organized by
Department of Informatics
Faculty of Engineering
Universitas Muhammadiyah Semarang

W : https://jurnal.unimus.ac.id/index.php/ICHI
E : jichi.informatika@unimus.ac.id, ahmadilham@unimus.ac.id

View My Stats