PERAMALAN DENGAN METODE SARIMA PADA DATA INFLASI DAN IDENTIFIKASI TIPE OUTLIER (Studi Kasus: Data Inflasi Indonesia Tahun 2008-2014)

Iin Fadliani(1*), Ika Purnamasari(2), Wasono Wasono(3)


(1) Laboratorium Statistika Ekonomi dan Bisnis FMIPA Universitas Mulawarman
(2) Laboratorium Matematika Komputasi FMIPA Universitas Mulawarman
(3) Laboratorium Matematika Komputasi FMIPA Universitas Mulawarman
(*) Corresponding Author

Abstract


Inflation is defined as rising prices of goods in general and continuously. The effect of inflation on the economy can cause the currency to decline, resulting in the country's economic power becoming weak. Time series data is data arranged in order of time or data collected over time. Changes in the inflation rate tend to make inflation data unstable and affect the forecasting process in the time series data. The method used in this study is the seasonal autoregressive integrated moving (SARIMA) method to predict the time series in one or two periods ahead. This study also used outlier identifiers on models that still have outlier tendencies in residuals. The forecasting results of the SARIMA method become inaccurate when residual data contains outliers. The presence of outlier data in residual data results in residuals is not a normal distribution. The method used obtained the best model results, namely the SARIMA model (0,1,1) (0,1,1)12 with inflation forecast value for January to May 2015 is in the range of 5-6 %. On SARIMA models (0,1,1) (1,1,1)12 and SARIMA models (1,1,0) (2,1,0)12 outliers are detected in residual are Additive Outlier (AO) and Temporary Change (TC) type.

Keywords


Additive Outlier, Inflation, SARIMA, Temporary Change

Full Text:

PDF

References


Aswi dan Sukarna. (2006). Analisis Deret Waktu: Teori dan Aplikasi. Makassar: Andira Publisher.

Chen, C., & Liu, L. M. (1993). Joint Estimation of Model Parameters and Outlier Effect in Time Series. Journal of the American Statistical Association, 88, 284-297.

Ferguson, TS, (1961). Pada Penolakan Outlier, Dalam Prosiding Keempat Simposium Berkelet tentang Statistik Matematika dan Probabilitas, vol. 1, 253-287.

Hair J. F. el. Al. (1995). “Multivariate Data Analysis With Reading”, Fourht Edision, Prientice Hall. New Jersey.

Hanke, J.E.,Reitsch, A.G. dan Wichern,D.W. (2003). Peramalan Bisnis. Edisi Ketujuh. Jakarta. Alih Bahasa: Devi Anantanur. PT. Prenhallindo.

Hadi, A., Hertatik, dan Pramesti, G. (2012). Aplikasi SPSS dalam Saham. Jakarta: PT Elex Media Komputindo.

Priyanto. (2010). Teknik Mudah dan Cepat Melakukan Analisis Data Penelitian dengan SPSS. Yogyakarta. Gava Media.

Rosadi, D. (2011). Analisis Ekonometrika dan RUntun Waktu Terapan dengan R. Yogyakarta: ANDI.

Sukirno, S. (2004). Makroekonomi Teori Pengantar. Edisi ketiga. Jakarta: Rajawali Pers.

Wei, W.W.S. (2006). Time Series Analysis: Univariate and Multivariate Methods. Kanada: Addison Wesley Publishing Company.


Article Metrics

Abstract view : 947 times
PDF - 451 times

DOI: https://doi.org/10.26714/jsunimus.9.2.2021.109-116

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Jurnal Statistika Universitas Muhammadiyah Semarang

Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
 
Universitas Muhammadiyah Semarang

Jl. Kedungmundu No. 18 Semarang Indonesia



Published by: 
Department of Statistics Universitas Muhammadiyah Semarang

View My Stats

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License