PEMODELAN INDEKS HARGA SAHAM GABUNGAN (IHSG) DAN JAKARTA ISLAMIC INDEX (JII) MENGGUNAKAN REGRESI BIRESPON SPLINE TRUNCATED BERBASIS GUI R

Dhea Dewanti(1*), Suparti Suparti(2), Alan Prahutama(3)


(1) 
(2) Departemen Statistika, FSM, Universitas Diponegoro
(3) Departemen Statistika, FSM, Universitas Diponegoro
(*) Corresponding Author

Abstract


The capital market is one of the economic drivers and representations for assessing the condition of companies in a country. Indonesia Stock Exchange (IDX) as one of the institutions in the capital market has 24 types of indexes that can be used as main indicators that reflect the performance of capital market, two of them are the Composite Stock Price Index (CSPI) and the Jakarta Islamic Index (JII). CSPI and JII movements are influenced by several factors, both from domestic and from foreign, such as inflation and the Dow Jones Industrial Average (DJIA). Modeling of CSPI and JII in this study was carried out using biresponses spline truncated nonparametric regression methods using Graphical User Interface (GUI) R with the intention of facilitating the analysis process. This method is used because there is a correlation between CSPI and JII and there is no specific relationship pattern between the response variable (CSPI and JII) and the predictor variable (inflation and DJIA). The best biresponses spline truncated model is determined by the order, number and location of the knots seen based on minimum GCV criteria. By using monthly data from January 2016 to December 2019, the best biresponses spline truncated model is obtained when the model for CSPI is in order 2 and the model for JII is in order 3 with 2 knots for each predictor variable. This model has a coefficient of determination of 85,54437% and MAPE of 2,65595% so that it has a very good ability in forecasting.

Full Text:

PDF

References


Budiantara, I.N. 2005. Model Keluarga Spline Polinomial Truncated dalam Regresi Semiparametrik. BIMIPA Vol. 15, No. 3: Hal. 55-61.

Chen, R. J. C., Bloomfield, P., & Cubbage, F. W. 2008. Comparing Forecasting Models in Tourism. Journal of Hospitality & Tourism Research Vol. 32, No. 1: Hal. 3-21.

Eubank, R.L. 1999. Nonparametric Regression and Spline Smoothing. Second Edition. New York: Marcel Dekker, Inc.

Fernandes, A.A.R., Budiantara, I.N., Otok, B.W., and Suhartono. 2014. Spline Estimator for Bi-responses Nonparametric Regression Model for Longitudinal Data. Applied Mathematical Sciences Vol. 8, No. 114: Hal. 5653-5665.

Fernandes, A.A.R. 2016. Truncated Spline for Estimating the Curve of Nonparametric Regressions Bi-responsesfor Prediction the Inflation and Economic Growth in Malang, Indonesia, Year 2001-2015. International Journal of Social Relevance & Concern ISSN-2347-9698 Vol 4: Hal. 26-32.

Gujarati, D.N. 2003. Basic Econometrics. Fourth Edition. New York: MCGraw-Hill Companies, Inc.

Haryogo, A. 2013. Pengaruh Nilai Tukar dan Indeks Dow Jones Terhadap Composite Index di Bursa Efek Indonesia. FINESTA Vol. 1, No. 1: Hal. 1-6.

Kurniawan, R. D dan Asandimitra, N. 2014. Analisis Perbandingan Kinerja Indeks Saham Syariah Dan Kinerja Indeks Saham Konvensional. Jurnal Ilmu Manajemen Vol. 2, No. 4: Hal. 1354-1366.

Salim, J.F., Jamal, A., Seftarita, C. 2017. Pengaruh Faktor Dalam dan Luar Negeri Terhadap Indeks Harga Saham Gabungan (IHSG) di Indonesia. Jurnal Ekonomi dan Kebijakan Publik Indonesia Vol. 4, No. 1: Hal. 35-48.

Sunariyah. 2006. Pengantar Pengetahuan Pasar Modal. Yogyakarta: UPP-AMP YKPN.

Tirta, I. M. 2015. Panduan Penyusunan Modul dan Analisis Data Online Berbasis Web Interaktif Menggunakan R dalam Rangka Melengkapi K Statistika Virtual (Online, Interaktif, Terintegrasi). Jember: Universitas Jember.

Tandelilin, E. 2001. Analisis Investasi dan Manajemen Portofolio. Yogyakarta: BPFE.

Wahba, G. 1990. Spline Models for Observational Data. Pennsylvania: SIAM.

Walpole, R. E., Myers, R.H., Myers, S.L., and Ye, K. 2012. Probability dan Statistics for Engineers and Scientists. Ninth Edition. London: Pearson Education LTD.

Wu, H. and Zang, J. T., 2006. Nonparametric Regression Methods for Longitudinal Data Analysis. New Jersey: John Wiley and Sons


Article Metrics

Abstract view : 476 times
PDF - 85 times

DOI: https://doi.org/10.26714/jsunimus.8.2.2020.134-143

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Statistika Universitas Muhammadiyah Semarang

Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
 
Universitas Muhammadiyah Semarang

Jl. Kedungmundu No. 18 Semarang Indonesia



Published by: 
Department of Statistics Universitas Muhammadiyah Semarang

View My Stats

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License