MULTIVARIATE ADAPTIVE REGRESSION SPLINE DAN REGRESI KUANTIL PADA INDEKS HARGA SAHAM GABUNGAN PERIODE 2013-2018

Putri Permathasari(1*), Dodi Devianto(2), Mayastri Mayastri(3)


(1) 
(2) 
(3) 
(*) Corresponding Author

Abstract


Indeks Harga Saham Gabungan yang disingkat dengan IHSG adalah indikator pergerakan harga saham. IHSG merupakan salah satu pedoman bagi investor untuk melakukan investasi di pasar modal. Data IHSG yang fluktuatif cendrung melanggar asumsi normalitas, homoskedastisitas, autokorelasi, dan multikolinearitas. Permasalahan tersebut dapat diatasi dengan memodelkan data IHSG menggunakan regresi nonparametrik diantaranya metode Multivariate Adaptive Regression Spline (MARS)
dan metode Regresi Kuantil, dengan variabel prediktor suku bunga, inflasi, nilai tukar (kurs), gold, Indeks Down Jones dan Indeks Nikkei 225. Data IHSG yang digunakan adalah periode April 2013 sampai dengan April 2018. Model terbaik dipilih dengan membandingkan nilai R2 dan MSE metode MARS dan metode Regresi Kuantil. Dari analisis nilai R2 metode MARS lebih besar dari metode Regresi Kuantil. Sedangkan nilai MSE metode MARS lebih kecil dari metode Regresi Kuantil. Ini artinya regresi
MARS lebih baik digunakan pada penelitian IHSG ini.
 
Kata kunci : Multivariate Adaptive Regression Spline (MARS), Regrsi Kuantil, IHSG.

Full Text:

PDF

Article Metrics

Abstract view : 395 times
PDF - 99 times

DOI: https://doi.org/10.26714/jsunimus.6.2.2018.%25p

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Jurnal Statistika Universitas Muhammadiyah Semarang

Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
 
Universitas Muhammadiyah Semarang

Jl. Kedungmundu No. 18 Semarang Indonesia



Published by: 
Department of Statistics Universitas Muhammadiyah Semarang

View My Stats

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License