STOCK PRICE FORECASTING OF PT. BANK CENTRAL ASIA USING HYBRID AUTOREGRESSIVE INTEGRATED MOVING AVERAGE-NEURAL NETWORK (ARIMA-NN) METHOD

Apipah Nur Azizah(1*), Fatkhurokhman Fauzi(2), Prizka Rismawati Arum(3)


(1) Department of Statistics, Universitas Muhammadiyah Semarang, Semarang, Indonesia
(2) Department of Statistics, Universitas Muhammadiyah Semarang, Semarang, Indonesia
(3) Department of Statistics, Universitas Muhammadiyah Semarang, Semarang, Indonesia
(*) Corresponding Author

Abstract


PT. Bank Central Asia is a private company that has superior shares in the Lq45 category but has share prices that fluctuate every period. So forecasting is needed to predict stock prices in the next period. These fluctuations can cause linear and nonlinear relationships in historical stock price data. This research uses the Hybrid ARIMA-NN approach, where the ARIMA model is able to overcome data non-stationarity while the Neural Network is used to capture nonlinear patterns that cannot be explained by the ARIMA model by using the residuals as NN input, the hybrid model can increase forecasting accuracy. The data used is weekly data on closing stock prices for the period January 2019 to June 2024. Prediction measurements use Mean Absolute Percentage Error. The research results show that forecasting with Hybrid ARIMA(2,1,2)-NN(1-5-1) obtained a MAPE value of 3.99% smaller than the ARIMA(2,1,2) a MAPE value of 4.13%, that the accuracy of the forecasting model is good.

Keywords


BBCA Shares, Forecasting, Hybrid ARIMA-NN, MAPE

Full Text:

PDF

References


M. P. Abdillah, E. Zukhronah, and Respatiwulan, “Peramalan Harga Saham PT. Bank Central Asia Tbk Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA),” in Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST), Yogyakarta, 2021.

C. N. R. Putri, “Peramlan Harga Saham Subsektor Perbankan Menggunakan Metode Geometric Brownian Motion (GBM) dan Estimasi Value at Risk (VaR),” Universitas Muhammadiyah Semarang, 2022.

W. R. U. Fadilah, D. Agfiannisa, and Y. Azhar, “Analisis Prediksi Harga Saham PT. Telekomunikasi Indonesia Menggunakan Metode Support Vector Machine,” Fountain of Informatics Journal, vol. 5, no. 2, pp. 45–51, Sep. 2020, doi: 10.21111/fij.v5i2.4449.

C. D. Setiawan, W. Sulandari, and Y. Susanti, “Peramalan Harga Saham PT Unilever Indonesia Menggunakan Metode Hibrida ARIMA-NEURAL NETWORK,” 2023, Seminar Nasional Riset dan Inovasi Teknologi (SEMNAS RISTEK).

D. Ayu Rezaldi and Sugiman, “Peramalan Metode ARIMA Data Saham PT. Telekomunikasi Indonesia,” PRISMA, Prosiding Seminar Nasional Matematika , vol. 4, pp. 611–620, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/

E. Dave, A. Leonardo, M. Jeanice, and N. Hanafiah, “Forecasting Indonesia Exports using a Hybrid Model ARIMA-LSTM,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 480–487. doi: 10.1016/j.procs.2021.01.031.

I. K. Hasan and I. Djakaria, “Perbandingan Model Hybrid ARIMA-NN dan Hybrid ARIMA-GARCH untuk Peramalan Data Nilai Tukar Petani di Provinsi Gorontalo,” Jurnal Statistika dan Aplikasinya, vol. 5, no. 2, 2021.

D. A. Anggraini, S. Wahyuningsih, and M. Siringoringo, “Peramalan Harga Minyak Mentah Indonesia Jenis Sepinggan Yakin Mix Menggunakan Model Hybrid Autoregressive Integrated Moving Average-Neural Network,” 2023. [Online]. Available: https://migas.esdm.go.id/.

A. Amrullah, O. Soesanto, and Maisarah, “Penerapan Metode Hybrid ARIMA-ANN Untuk Memprediksi Harga Saham PT. BNI (Persero) Tbk,” RAGAM: Journal of Statistics and Its Application, vol. 01, no. 01, 2022.

N. Sadeghi Gargari, H. Akbari, and R. Panahi, “Forecasting Short-term Container Vessel Traffic Volume Using Hybrid ARIMA-NN Model,” INTERNATIONAL JOURNAL OF COASTAL & OFFSHORE ENGINEERING (IJCOE), vol. 4, no. 3, pp. 47–52, 2019.

M. Al Haris and P. R. Arum, “Peramalan Harga Emas Dengan Model Generalized Autoregressive Conditional Heteroskedasticity (GARCH),” Jurnal Sains dan Matematika Unpam, vol. 3, no. 1, pp. 19–30, 2020.

M. K. Possumah and A. A. Rohmawati, “Prediksi Harga Saham Menggunakan Vector Autoregressive (VAR) Non-Stasioner (Studi Kasus Saham Perusahaan PT United Tractors Tbk),” in e-Proceeding of Engineering, 2020, p. 8361. [Online]. Available: https://www.bi.go.id/.

M. Mardhatillah, “Peramalan Curah Hujan Di Provinsi Sumatera Barat Menggunakan Vector Autoregressive-Generalized Space Time Autoregressive (VAR-GSTAR),” 2021. [Online]. Available: http://repository.unimus.ac.id

S. Deviana, Nusyirwan, D. Azis, and P. Ferdias, “Analisis Model Autoregressive Integrated Moving Average Data Deret Waktu Dengan Metode Momen Sebagai Estimasi Parameter,” Jurnal Siger Matematika, vol. 02, no. 02, 2021.

Y. W. A. Nanlohy and S. B. Loklomin, “Model Autoregressive Integrated Moving Average (ARIMA) Untuk Merelekan Inflasi Indonesia,” VARIANCE: Journal of Statistics and Its Applications, vol. 5, no. 2, pp. 201–208, Oct. 2023, doi: 10.30598/variancevol5iss2page201-208.

U. C. Buyuksahin and S. Ertekin, “Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition,” Neurocomputing, vol. 361, pp. 151–163, Oct. 2019, doi: 10.1016/j.neucom.2019.05.099.

M. E. Sonata, “Peramalan Produksi Padi Di Provinsi Jawa Timur Menggunakan Metode Feedforward Neural Network,” Universitas Muhammadiyah Semarang, 2021. [Online]. Available: http://repository.unimus.ac.id

Y. Rismawanti, “Peramlan Nilai Tukar Rupiah Terhadap Dolar Amerika Menggunakan Feedforward Neural Network Dengan Algoritma Backpropagation,” Universitas Muhammadiyah Semarang, 2019. [Online]. Available: http://repository.unimus.ac.id

V. Sari and D. A. Maulidany, “Prediksi Kecepatan Angin Dalam Mendeteksi Gelombang Air Laut Terhadap Skala Beaufort Dengan Metode Hybrid ARIMA-ANN,” Statistika, vol. 8, no. 1, 2020, [Online]. Available: http://jurnal.unimus.ac.id


Article Metrics

Abstract view : 130 times
PDF - 20 times

DOI: https://doi.org/10.26714/jsunimus.12.1.2024.48-59

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024

Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
 
Universitas Muhammadiyah Semarang

Jl. Kedungmundu No. 18 Semarang Indonesia



Published by: 
Department of Statistics Universitas Muhammadiyah Semarang

View My Stats

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License