STOCK PRICE FORECASTING OF PT. BANK CENTRAL ASIA USING HYBRID AUTOREGRESSIVE INTEGRATED MOVING AVERAGE-NEURAL NETWORK (ARIMA-NN) METHOD
(1) Department of Statistics, Universitas Muhammadiyah Semarang, Semarang, Indonesia
(2) Department of Statistics, Universitas Muhammadiyah Semarang, Semarang, Indonesia
(3) Department of Statistics, Universitas Muhammadiyah Semarang, Semarang, Indonesia
(*) Corresponding Author
Abstract
Keywords
Full Text:
PDFReferences
M. P. Abdillah, E. Zukhronah, and Respatiwulan, “Peramalan Harga Saham PT. Bank Central Asia Tbk Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA),” in Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST), Yogyakarta, 2021.
C. N. R. Putri, “Peramlan Harga Saham Subsektor Perbankan Menggunakan Metode Geometric Brownian Motion (GBM) dan Estimasi Value at Risk (VaR),” Universitas Muhammadiyah Semarang, 2022.
W. R. U. Fadilah, D. Agfiannisa, and Y. Azhar, “Analisis Prediksi Harga Saham PT. Telekomunikasi Indonesia Menggunakan Metode Support Vector Machine,” Fountain of Informatics Journal, vol. 5, no. 2, pp. 45–51, Sep. 2020, doi: 10.21111/fij.v5i2.4449.
C. D. Setiawan, W. Sulandari, and Y. Susanti, “Peramalan Harga Saham PT Unilever Indonesia Menggunakan Metode Hibrida ARIMA-NEURAL NETWORK,” 2023, Seminar Nasional Riset dan Inovasi Teknologi (SEMNAS RISTEK).
D. Ayu Rezaldi and Sugiman, “Peramalan Metode ARIMA Data Saham PT. Telekomunikasi Indonesia,” PRISMA, Prosiding Seminar Nasional Matematika , vol. 4, pp. 611–620, 2021, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/
E. Dave, A. Leonardo, M. Jeanice, and N. Hanafiah, “Forecasting Indonesia Exports using a Hybrid Model ARIMA-LSTM,” in Procedia Computer Science, Elsevier B.V., 2021, pp. 480–487. doi: 10.1016/j.procs.2021.01.031.
I. K. Hasan and I. Djakaria, “Perbandingan Model Hybrid ARIMA-NN dan Hybrid ARIMA-GARCH untuk Peramalan Data Nilai Tukar Petani di Provinsi Gorontalo,” Jurnal Statistika dan Aplikasinya, vol. 5, no. 2, 2021.
D. A. Anggraini, S. Wahyuningsih, and M. Siringoringo, “Peramalan Harga Minyak Mentah Indonesia Jenis Sepinggan Yakin Mix Menggunakan Model Hybrid Autoregressive Integrated Moving Average-Neural Network,” 2023. [Online]. Available: https://migas.esdm.go.id/.
A. Amrullah, O. Soesanto, and Maisarah, “Penerapan Metode Hybrid ARIMA-ANN Untuk Memprediksi Harga Saham PT. BNI (Persero) Tbk,” RAGAM: Journal of Statistics and Its Application, vol. 01, no. 01, 2022.
N. Sadeghi Gargari, H. Akbari, and R. Panahi, “Forecasting Short-term Container Vessel Traffic Volume Using Hybrid ARIMA-NN Model,” INTERNATIONAL JOURNAL OF COASTAL & OFFSHORE ENGINEERING (IJCOE), vol. 4, no. 3, pp. 47–52, 2019.
M. Al Haris and P. R. Arum, “Peramalan Harga Emas Dengan Model Generalized Autoregressive Conditional Heteroskedasticity (GARCH),” Jurnal Sains dan Matematika Unpam, vol. 3, no. 1, pp. 19–30, 2020.
M. K. Possumah and A. A. Rohmawati, “Prediksi Harga Saham Menggunakan Vector Autoregressive (VAR) Non-Stasioner (Studi Kasus Saham Perusahaan PT United Tractors Tbk),” in e-Proceeding of Engineering, 2020, p. 8361. [Online]. Available: https://www.bi.go.id/.
M. Mardhatillah, “Peramalan Curah Hujan Di Provinsi Sumatera Barat Menggunakan Vector Autoregressive-Generalized Space Time Autoregressive (VAR-GSTAR),” 2021. [Online]. Available: http://repository.unimus.ac.id
S. Deviana, Nusyirwan, D. Azis, and P. Ferdias, “Analisis Model Autoregressive Integrated Moving Average Data Deret Waktu Dengan Metode Momen Sebagai Estimasi Parameter,” Jurnal Siger Matematika, vol. 02, no. 02, 2021.
Y. W. A. Nanlohy and S. B. Loklomin, “Model Autoregressive Integrated Moving Average (ARIMA) Untuk Merelekan Inflasi Indonesia,” VARIANCE: Journal of Statistics and Its Applications, vol. 5, no. 2, pp. 201–208, Oct. 2023, doi: 10.30598/variancevol5iss2page201-208.
U. C. Buyuksahin and S. Ertekin, “Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition,” Neurocomputing, vol. 361, pp. 151–163, Oct. 2019, doi: 10.1016/j.neucom.2019.05.099.
M. E. Sonata, “Peramalan Produksi Padi Di Provinsi Jawa Timur Menggunakan Metode Feedforward Neural Network,” Universitas Muhammadiyah Semarang, 2021. [Online]. Available: http://repository.unimus.ac.id
Y. Rismawanti, “Peramlan Nilai Tukar Rupiah Terhadap Dolar Amerika Menggunakan Feedforward Neural Network Dengan Algoritma Backpropagation,” Universitas Muhammadiyah Semarang, 2019. [Online]. Available: http://repository.unimus.ac.id
V. Sari and D. A. Maulidany, “Prediksi Kecepatan Angin Dalam Mendeteksi Gelombang Air Laut Terhadap Skala Beaufort Dengan Metode Hybrid ARIMA-ANN,” Statistika, vol. 8, no. 1, 2020, [Online]. Available: http://jurnal.unimus.ac.id
Article Metrics
Abstract view : 130 timesPDF - 20 times
DOI: https://doi.org/10.26714/jsunimus.12.1.2024.48-59
Refbacks
- There are currently no refbacks.
Copyright (c) 2024
Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
Universitas Muhammadiyah Semarang
Jl. Kedungmundu No. 18 Semarang Indonesia
Published by:
Department of Statistics Universitas Muhammadiyah Semarang
This work is licensed under a Creative Commons Attribution 4.0 International License