KLASIFIKASI TINGKAT KELANCARAN NASABAH DALAM MEMBAYAR PREMI DENGAN MENGGUNAKAN METODE K-NEAREST NEIGHBOR DAN ANALISIS DISKRIMINAN FISHER (Studi kasus: Data Nasabah PT. Prudential Life Samarinda Tahun 2019)

Amanah Saeroni(1*), Memi Nor Hayati(2), Rito Goejantoro(3)


(1) Mulawarman University
(2) Program Studi Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mulawarman
(3) Program Studi Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mulawarman
(*) Corresponding Author

Abstract


Classification is a technique to form a model of data that is already known to its classification group. The model that was formed will be used to classify new objects. The K-Nearest Neighbor (K-NN) algorithm is a method for classifying new objects based on their K nearest neighbor. Fisher discriminant analysis is a multivariate technique for separating objects in different groups to form a discriminant function for allocate new objects in groups. This research has a goal to determine the results of classifying customer premium payment status using the K-NN method and Fisher discriminant analysis and comparing the accuracy of the K-NN method classification and Fisher discriminant analysis on the insurance customer premium payment status. The data used is the insurance customer data of PT. Prudential Life Samarinda in 2019 with current premium payment status or non-current premium payment status and four independent variables are age, duration of premium payment, income and premium payment amount. The results of the comparative measurement of accuracy from the two analyzes show that the K-NN method has a higher level of accuracy than Fisher discriminant analysis for the classification of insurance customers premium payment status. The results of misclassification using the APER (Apparent Error Rate) in K-NN method is 15% while in Fisher discriminant analysis is 30%.


Keywords


Fisher discriminant analysis, insurance, K-nearest neighbor

Full Text:

PDF

References


Prakoso, D. (1994). Asuransi Indonesia. Semarang: Dahara Prize.

Prasetyo, E. (2014). Data Mining: Konsep dan Aplikasi Menggunakan Matlab. Yogyakarta: Andi Offset.

Artha, C. U, Nasution, Y.N dan Purnamasari, I. (2016). Perbandingan Hasil Klasifikasi Menggunakan Regresi Logistik dan Analisis Diskriminan Kuadratik Pada Kasus Pengklasifikasian Jurusan Di SMA Negeri 8 Samarinda Tahun Ajaran 2014/2015. Jurnal Eksponensial. 7(2). 179-186.

Jayanti, R. D dan Noeryanti. (2014). Aplikasi Metode K-NN dan Analisis Diskriminan untuk Analisis Resiko Kredit pada Koperasi Simpan Pinjam di Kopinkra Sumber Rejeki. Jurnal SNAST. Vol 4 No.8 275-284.

Dillon, W. R and Goldstein, M. (1984). Multivariate Analysis Methods and Application. New York: John Wiley & Sons. Inc.


Article Metrics

Abstract view : 626 times
PDF - 164 times

DOI: https://doi.org/10.26714/jsunimus.8.2.2020.88-94

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Statistika Universitas Muhammadiyah Semarang

Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
 
Universitas Muhammadiyah Semarang

Jl. Kedungmundu No. 18 Semarang Indonesia



Published by: 
Department of Statistics Universitas Muhammadiyah Semarang

View My Stats

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License