Indeks Pembangunan Manusia (IPM) adalah mengukur capaian pembangunan manusia berbasis sejumlah komponen dasar kualitas hidup. Indeks pembangunan manusia dikatakan rendah jika IPM kurang dari 60, IPM sedang antara 60 sampai kurang dari 70,IPM tinggi antara 70 sampai kurang dari 80, dan sama dengan 80 dan lebih dari 80 tergolong IPM tinggi. Smooth Support Vector Machine (SSVM) merupakan teknik pengklasifikasian yang tergolong baru. Algoritma yang digunakan adalah Newton Armijo dengan pendekatan kernel linier, polynomial, dan Radial Basis Function (RBF). Hasil klasifikasi indeks pembangunan manusia dengan metode SSVM dengan kernel linier menunjukan keakuratan prediksi sebesar 84.77%, kernel polynomial 61.65%, dan kernel RBF sebesar 100%. Dengan jumlah klasifikasi 440 kabupaten/ kota untuk kernel linier,kernel polynomial 320, dan kernel RBF 519 kabupaten/kota yang dibagi menjadi 4 klasifikasi menurut BPS. Dari ketiga kernel yang digunakan kernel Radial Basis Function (RBF) merupakan kernel yang paling akurat dalam memperdiksi serta IPM. Kata kunci: Indeks Pembangunan Manusia, Smooth Support Vector Machine (SSVM), kernel, akurasi, klasifikasi