COMPARISON OF FEEDFORWARD NEURAL NETWORK AND LONG SHORT TERM MEMORY IN SENTIMENT ANALYSIS OF SHOPEE APPLICATION REVIEWS

Dwi Ayu Lusia(1*), Yessica Maretha Simanjuntak(2)


(1) Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Indonesia
(2) Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Indonesia
(*) Corresponding Author

Abstract


Sentiment analysis is a method for generating types of views or opinions that express positive, neutral or negative sentiments. The application of sentiment analysis was carried out to determine the sentiment of Shopee application users. This research uses an artificial neural network algorithm to learn patterns from training data to predict the sentiment of the test data class. The aim of the research is to determine sentiment classification, identify the optimal Feedforward Neural Network and Long Short Term Memory architectural models in classifying user reviews of the Shopee application and compare the performance of the models based on the level of accuracy. The data set is divided into training data and test data respectively by 80% and 20%. The research results showed that there were 91.865 reviews with positive sentiment, 63.038 negative reviews and 26.662 neutral reviews based on Valanced Aware Dictionary Sentiment lexicon dictionary. The network architecture used is one hidden layer, with 137 hidden neurons and a two hidden layer model, with 491 units of first hidden neurons and 38 units of second hidden layer neurons. Evaluation of sentiment classification of Shopee application users resulted in the highest accuracy rate on the single-layer LSTM model, at 68,93%, with precision of 61,29%, and recall of 56,10%.

Keywords


Feedforward Neural Network; Long Short Term Memory; Sentiment Analysis; Shopee

Full Text:

PDF

References


A. K. Tyagi and P. Chahal, “Artificial Intelligence and Machine Learning Algorithms,” in Challenges and Applications for Implementing Machine Learning in Computer Vision, IGI Global, 2020, pp. 188–219. doi: 10.4018/978-1-7998-0182-5.ch008.

B. Liu, Sentiment Analysis and Opinion Mining. Chicago: Morgan & Claypool Publishers, 2012.

M. Mhatre, D. Phondekar, P. Kadam, A. Chawathe, and K. Ghag, “Dimensionality reduction for sentiment analysis using pre-processing techniques,” in 2017 International Conference on Computing Methodologies and Communication (ICCMC), Jul. 2017, pp. 16–21. doi: 10.1109/ICCMC.2017.8282676.

C. Slamet, A. R. Atmadja, D. S. Maylawati, R. S. Lestari, W. Darmalaksana, and M. A. Ramdhani, “Automated Text Summarization for Indonesian Article Using Vector Space Model,” IOP Conf. Ser. Mater. Sci. Eng., vol. 288, no. 1, p. 012037, Jan. 2018, doi: 10.1088/1757-899X/288/1/012037.

T. Rahman, F. E. M. Agustin, and N. F. Rozy, “Normalization of Unstructured Indonesian Tweet Text For Presidential Candidates Sentiment Analysis,” in 2019 7th International Conference on Cyber and IT Service Management (CITSM), Jakarta: IEEE, Nov. 2019, pp. 1–6. doi: 10.1109/CITSM47753.2019.8965324.

K. V. Ghag and K. Shah, “Comparative analysis of effect of stopwords removal on sentiment classification,” in 2015 International Conference on Computer, Communication and Control (IC4), Sep. 2015, pp. 1–6. doi: 10.1109/IC4.2015.7375527.

R. K. Das, M. Islam, M. M. Hasan, S. Razia, M. Hassan, and S. A. Khushbu, “Sentiment analysis in multilingual context: Comparative analysis of machine learning and hybrid deep learning models,” Heliyon, vol. 9, no. 9, p. e20281, Sep. 2023, doi: 10.1016/j.heliyon.2023.e20281.

J. Singh and V. Gupta, “Text Stemming: Approaches, Applications, and Challenges,” ACM Comput Surv, vol. 49, no. 3, p. 45:1-45:46, Sep. 2016, doi: 10.1145/2975608.

C. Hutto and E. Gilbert, “VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text,” Proc. Int. AAAI Conf. Web Soc. Media, vol. 8, no. 1, Art. no. 1, May 2014, doi: 10.1609/icwsm.v8i1.14550.

D. Sarkar, Text Analytics with Python: A Practitioner’s Guide to Natural Language Processing. New York: Apress, 2019.

D. A. Lusia and A. Ambarwati, “PERBANDINGAN PERAMALAN UNIVARIAT DAN MULTIVARIAT ARIMA PADA INDEKS HARGA SAHAM GABUNGAN,” J. Stat. Univ. Muhammadiyah Semarang, vol. 6, no. 2, Art. no. 2, 2018, doi: 10.26714/jsunimus.6.2.2018.%p.

D. A. Lusia and A. Ambarwati, “Desain Faktorial untuk Pembuktian Teori Masters dalam Penentuan Jumlah Lapisan dan Neuron Tersembunyi pada Peramalan Multivariat dengan Jaringan Syaraf Tiruan,” J. Teknol. Inf. Dan Ilmu Komput., vol. 7, no. 1, Art. no. 1, Feb. 2020.

J. J. Siang, Jaringan Syaraf Tiruan Dan Pemrograman Menggunakan Matlab. Yogyakarta: ANDI, 2009. Accessed: Jul. 04, 2017. [Online]. Available: https://www.belbuk.com/jaringan-syaraf-tiruan-dan-pemrograman-menggunakan-matlab-p-8134.html

T. Szandała, “Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks,” in Bio-inspired Neurocomputing, A. K. Bhoi, P. K. Mallick, C.-M. Liu, and V. E. Balas, Eds., Singapore: Springer, 2021, pp. 203–224. doi: 10.1007/978-981-15-5495-7_11.

R. C. Staudemeyer and E. R. Morris, “Understanding LSTM -- a tutorial into Long Short-Term Memory Recurrent Neural Networks,” pp. 1–42, Sep. 2019, doi: 10.48550/arXiv.1909.09586.

U. B. Mahadevaswamy and P. Swathi, “Sentiment Analysis using Bidirectional LSTM Network,” Procedia Comput. Sci., vol. 218, pp. 45–56, Jan. 2023, doi: 10.1016/j.procs.2022.12.400.


Article Metrics

Abstract view : 12 times
PDF - 7 times

DOI: https://doi.org/10.26714/jsunimus.13.1.2025.74-84

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Statistika Universitas Muhammadiyah Semarang

Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
 
Universitas Muhammadiyah Semarang

Jl. Kedungmundu No. 18 Semarang Indonesia



Published by: 
Department of Statistics Universitas Muhammadiyah Semarang

View My Stats

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License