APPLICATION OF BINARY LOGISTICS REGRESSION AND RANDOM FOREST TO CIGARETTE CONSUMPTION EXPENDITURE IN GORONTALO REGENCY 2022

Mohamad Taufik Hamani(1), Dewi Rahmawaty Isa(2), Salmun K. Nasib(3*), Hasan S. Panigoro(4), Isran K. Hasan(5), Nisky Imansyah Yahya(6)


(1) Statistics Study Program, Universitas Negeri Gorontalo
(2) Statistics Study Program, Universitas Negeri Gorontalo
(3) Statistics Study Program, Universitas Negeri Gorontalo
(4) Statistics Study Program, Universitas Negeri Gorontalo
(5) Statistics Study Program, Universitas Negeri Gorontalo
(6) Statistics Study Program, Universitas Negeri Gorontalo
(*) Corresponding Author

Abstract


The goal of this research is to predict or identify an object's class using its available attributes through classification. The aim of this research is to use the random forest method to develop a classification model and the binary logistic regression method to discover significant determinants in cigarette consumption expenditure in Gorontalo Regency. The findings indicated that the size of the home, the number of family members, and the head of the household's educational attainment all had a considerable impact. Only the household head's educational attainment, however, consistently influences the model and satisfies the goodness of fit requirements. In contrast, the random forest model outperformed binary logistic regression in the classification analysis when classification characteristics including accuracy, precision, recall, and f1-score were assessed. Consequently, random forest was found to be the most effective classification model in this investigation.

Keywords


Classification; Binary Logistic Regression; Random Forest; Cigarette Consumption Expenditure

Full Text:

PDF

References


Muhammad Firdaus, Ekonometrika. Bumi Aksara, 2021.

Setio, Panji Bimo Nugroho and Saputro, Dewi Retno Sari and Winarno, Bowo, “Klasifikasi Dengan Pohon Keputusan Berbasis Algoritme C4. 5,” PRISMA, vo;. 3, pp. 64-71, 2020.

Iut Tri Utami, Fadjryani Fadjryani, and Diah Daniaty,”Perbandingan Klasifikasi

Status Pendonor Darah dengan Menggunakan Regresi Logistik dan K-

Nearest Neighbor”, Jurnal Aplikasi Statistika & Komputasi Statistik, vol. 12, no. 1, pp. 1–1, Jun. 2020, doi: https://doi.org/10.34123/jurnalasks.v12i1.217.

Samad, Mohammad Ardani, “Bab 4 Statistik Deskriptif,” Statistik Kesehatan: Teori dan Aplikasi, pp. 33, 2022.

Krisna Wansi Patunduk, R. Hidayat, Avini Avini, Sumarni Sumarni, Ananda Pratiwi, and Harbianti Harbianti, “Pemodelan Pasien Covid-19 Di Kota Palopo Dengan Regresi Logistik (Studi Perbandingan Regresi Logistik dan Analisis Survival),” Proximal, vol. 5, no. 2, pp. 260–269, Aug. 2022, doi: https://doi.org/10.30605/proximal.v5i2.1963.

E. Roflin, Freza Riana, Ensiwi Munarsih, Pariyana, and Iche Andriyani Liberty, Regresi Logistik Biner dan Multinomial. Penerbit NEM, 2023.

T. Purwa, “Perbandingan Metode Regresi Logistik dan Random Forest untuk Klasifikasi Data Imbalanced (Studi Kasus: Klasifikasi Rumah Tangga Miskin di Kabupaten Karangasem, Bali Tahun 2017),” Jurnal Matematika, Statistika dan Komputasi, vol. 16, no. 1, p. 58, Jun. 2019, doi: https://doi.org/10.20956/jmsk.v16i1.6494.

R. Susetyoko, Wiratmoko Yuwono, E. Purwantini, and N. Ramadijanti, “Perbandingan Metode Random Forest, Regresi Logistik, Naïve Bayes, dan Multilayer Perceptron Pada Klasifikasi Uang Kuliah Tunggal (UKT),” Jurnal infomedia : teknik informatika, multimedia, dan jaringan, vol. 7, no. 1, pp. 8–8, Jun. 2022, doi: https://doi.org/10.30811/jim.v7i1.2916.

Badan Pusat Statistik, Kabupaten Gorontalo dalam Angka Gorontalo Regency in Figures 2022. 2022.

A. Marianti and B. Prayitno, “Analisis Pengaruh Faktor Sosial Ekonomi, Pendapatan dan Harga Rokok Terhadap Konsumsi Rokok di Indonesia,” Economie: Jurnal Ilmu Ekonomi, vol. 1, no. 2, pp. 93–106, Jan. 2020, doi: https://doi.org/10.30742/economie.v1i2.1126.

K. M. N. Perera, G. N. D. Guruge, and P. L. Jayawardana, “Household Expenditure on Tobacco Consumption in a Poverty-Stricken Rural District in Sri Lanka,” Asia Pacific Journal of Public Health, vol. 29, no. 2, pp. 140–148, Feb. 2017, doi: https://doi.org/10.1177/1010539517690225.

A. R. S. Darwanto, Taza Luzia Viarindita, and Yekti Widyaningsih, “Analisis Regresi Logistik Binomial dan Algoritma Random Forest pada Proses Pengklasifikasian Penyakit Ginjal Kronis,” Jurnal Statistika dan Aplikasinya, vol. 5, no. 1, pp. 1–14, Jun. 2021, doi: https://doi.org/10.21009/jsa.05101.

Riska Yanu Fa'rifah and B. Poerwanto, “Penerapan Regresi Logistik Dalam Menganalisis Faktor Penyebab Peningkatan Angka Kematian Bayi,” d’ComPutarE: Jurnal Ilmiah Information Technology, vol. 9, no. 1, pp. 52–55, Jan. 2019.

Nanang Husin, “Komparasi Algoritma Random Forest, Naïve Bayes, dan Bert Untuk Multi-Class Classification Pada Artikel Cable News Network (CNN),” Jurnal Esensi Infokom Jurnal Esensi Sistem Informasi dan Sistem Komputer, vol. 7, no. 1, pp. 75–84, May 2023, doi: https://doi.org/10.55886/infokom.v7i1.608.

L. B. C. Tanujaya, B. Susanto, and A. Saragih, “The Comparison of Logistic Regression Methods and Random Forest for Spotify Audio Mode Featurre Classification,” Indonesian Journal of Data and Science, vol. 1, no. 3, Dec. 2020, doi: https://doi.org/10.33096/ijodas.v1i3.16.


Article Metrics

Abstract view : 12 times
PDF - 4 times

DOI: https://doi.org/10.26714/jsunimus.13.1.2025.14-22

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Jurnal Statistika Universitas Muhammadiyah Semarang

Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
 
Universitas Muhammadiyah Semarang

Jl. Kedungmundu No. 18 Semarang Indonesia



Published by: 
Department of Statistics Universitas Muhammadiyah Semarang

View My Stats

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License