CLUSTERING DISTRICT/CITY IN WEST KALIMANTAN BASED ON FACTORS CAUSING STUNTING USING K-HARMONIC MEANS METHOD

Rahmania Andarini Hatti Imanni(1*), Evy Sulistianingsih(2), Hendra Perdana(3)


(1) Tanjungpura University
(2) Tanjungpura University
(3) Tanjungpura University
(*) Corresponding Author

Abstract


Stunting is a chronic nutritional problem caused by inadequate dietary intake over time. The results of the Indonesian Nutrition Status Survey (SSGI) 2021 show that the percentage of stunting in West Kalimantan is 29.8%, higher than the national average. Based on the high number of stunting cases in West Kalimantan, it is necessary to group districts/cities in West Kalimantan based on the factors that cause stunting. This study aims to analyze the clustering of districts/cities in West Kalimantan based on the factors that cause stunting using the K-Harmonic Means method and analyze the number of optimal clusters using the silhouette coefficient. The percentage of households without access to clean drinking water , the rate of exclusive breastfeeding , the percentage of low birth weight babies born safely , the percentage of households without proper sanitation facilities  in 2021 are the variables analyzed in this study. The analysis results show that the optimal number of clusters is 4 with a silhouette coefficient value of 0.744, indicating a solid structure in the grouping. Cluster 1 is a cluster with a very high causal factor for stunting. The most influential factors in cluster 1 are households without access to clean drinking water, lack of exclusive breastfeeding, and low birth babies born safely.

Keywords


Stunting; Cluster; Optimal

Full Text:

PDF

References


Promkes.kemkes.go.id, “Mengenal Stunting dan Gizi Buruk. Penyebab, Gejala, dan Mencegah,” Promkes.kemkes.go.id,. https://promkes.kemkes.go.id/?p=8486 (accessed Nov. 20, 2022).

V. B. Kusnandar, “10 Provinsi dengan Angka Stunting Tertinggi Nasional Tahun 2021,” databoks, Jul. 12, 2022. https://databoks.katadata.co.id/datapublish/2022/07/12/10-provinsi-dengan-angka-stunting-tertinggi-nasional-tahun-2021 (accessed Oct. 20, 2022).

N. Muharrami, “Angka Stunting KALBAR Ditargetkan 14% di Tahun 2024,” kalbarprov.go.id, Jan. 24, 2022. https://kalbarprov.go.id/berita/angka-stunting-kalbar-ditargetkan-14-di-tahun-2024.html (accessed Oct. 20, 2022).

Kementerian Kesehatan, Buku Saku Pemantauan Status Gizi Tahun 2017. Jakarta: Kementerian Kesehatan , 2018.

A. Salsabila, T. Widiharih, D. Statistika, and F. Sains dan Matematika, “Metode K-Harmonic Means Clustering dengan Validasi Silhouette Coefficient (Studi Kasus : Empat Faktor Utama Penyebab Stunting 34 Provinsi di Indonesia Tahun 2018),” JURNAL GAUSSIAN, vol. 11, no. 1, pp. 11–20, 2022.

I. gede A. Gunadi, “Analisis Cluster Pada Pengelompokan Siswa Diktuk Bintara Polri TA. 2018/2019, SPN Singaraja - Polda Bali Menggunakan K-Means dan K-Harmonic Means,” Jurnal Ilmiah SINUS, vol. 17, no. 2, p. 13, Jul. 2019, doi: 10.30646/sinus.v17i2.421.

D. I. Yunistya, R. Goejantoro, F. Deny, and T. Amijaya, “The Application Of K-Harmonic Means Method In District/City Grouping (Case Study: Poverty in Kalimantan Island in 2020) Penerapan Metode K-Harmonic Means Dalam Pengelompokan Kabupaten/Kota (Studi Kasus: Kemiskinan di Pulau Kalimantan Tahun 2020),” Jurnal Matematika, Statistika dan Komputasi, vol. 19, no. 1, pp. 51–64, 2022, doi: 10.20956/j.v19i1.21116.

A. A. Dzikrullah, “Pengelompokan Provinsi Berdasarkan Kualitas Jaringan Internet Dengan Metode Centroid Linkage,” 2022. [Online]. Available: http://www.ojs.unm.ac.id/jmathcos

H. Usman and N. Sobari, Aplikasi Teknik Multivariate untuk riset pemasaran, 1st ed., vol. 1. Jakarta: Rajawali Pers, 2013.

J. F. Hair, W. C. Black, B. J. Babin, and R. E. Anderson, Multivariate Data Analysis, 7th ed. New York: Pearson, 2010.

Gujarati, N. Damodar, and C. P. Dawn, Dasar-dasar Ekonometrika, 5th ed. Jakarta: Salemba Empat, 2012.

Nicolaus, E. Sulistianingsih, and H. Perdana, “Penentuan Jumlah Cluster Optimal Pada Median Linkage Dengan Indeks Validitas Silhouette,” 2016.

B. Zhang, M. Hsu, and U. Dayal, “K-Harmonic Means -A Spatial Clustering Algorithm with Boosting,” 2001, pp. 31–45. doi: 10.1007/3-540-45244-3_4.

S. Wijaya, M. A. Mukid, D. Ispriyanti, and S. Pengajar, “Pengelompokan Kabupaten/Kota di Jawa Tengah Menurut Kualitas Udara Ambien Menggunakan Analisis K-Harmonic Mean Cluster (Studi Kasus: Kualitas Udara Ambien pada Kawasan Pemukiman di Jawa Tengah Tahun 2015),” Jurnal Ilmiah SINUS, vol. 1, no. 1, pp. 978–602, 2018.

U. Sa’adah, M. Y. Rochayani, D. W. Lestari, and Lusia. D.A, Kupas Tuntas Algoritma Data Mining dan Implementasinya Menggunakan R. Malang: UB Press, 2021.


Article Metrics

Abstract view : 269 times
PDF - 112 times

DOI: https://doi.org/10.26714/jsunimus.12.1.2024.%25p

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Jurnal Statistika Universitas Muhammadiyah Semarang

Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
 
Universitas Muhammadiyah Semarang

Jl. Kedungmundu No. 18 Semarang Indonesia



Published by: 
Department of Statistics Universitas Muhammadiyah Semarang

View My Stats

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License