BAYESIAN ANALYSIS OF TOBIT QUANTILE REGRESSION WITH ADAPTIVE LASSO PENALTY IN HOUSEHOLD EXPENDITURE FOR CIGARETTE CONSUMPTION

Fitri Rahmawati(1*), Subanar Subanar(2)


(1) Department of Mathematics, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Indonesia
(2) Department of Mathematics, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Indonesia
(*) Corresponding Author

Abstract


Tobit Quantile Regression with Adaptive Lasso Penalty is a quantile regression model on censored data that adds Lasso's adaptive penalty to its parameter estimation. The estimation of the regression parameters is solved by Bayesian analysis. Parameters are assumed to follow a certain distribution called the prior distribution. Using the sample information along with the prior distribution, the conditional posterior distribution is searched using the Box-Tiao rule. Computational solutions are solved by the MCMC Gibbs Sampling algorithm. Gibbs Sampling can generate samples based on the conditional posterior distribution of each parameter in order to obtain a posterior joint distribution. Tobit Quantile Regression with Adaptive Lasso Penalty was applied to data on Household Expenditure for Cigarette Consumption in 2011. As a comparison for data analysis, Tobit Quantile Regression was used. The results of data analysis show that the Tobit Quantile Regression model with  Adaptive Lasso Penalty is better than the Tobit Quantile Regression.

Keywords


Tobit Regression; Quantile; Adaptive Lasso; Bayesian

Full Text:

PDF

References


J. Tobin, “Estimation of Relationships for Limited Dependent Variables,” Econometrica, vol. 26, no. 1, pp. 24–36, 1985, [Online]. Available: https://www-jstor-org.ezproxy.ugm.ac.id/stable/1907382?seq=1.

J. L. Powell, “Censored regression quantiles,” J. Econom., vol. 32, no. 1, pp. 143–155, 1986, doi: https://doi.org/10.1016/0304-4076(86)90016-3.

R. Tibshirani, “Regression Shrinkage and Selection Via the Lasso,” J. R. Stat. Soc. Ser. B, vol. 58, no. 1, pp. 267–288, 1996, doi: 10.1111/j.2517-6161.1996.tb02080.x.

H. Zou, “The Adaptive Lasso and Its Oracle Properties,” J. Am. Stat. Assoc., vol. 101, no. 476, pp. 1418–1429, 2006, doi: 10.1198/016214506000000735.

Cintiani, “Pemodelan Regresi Kuantil (Studi Kasus Pengeluaran Rumah Tangga untuk Konsumsi Rokok),” Program Magister Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, 2017.

R. Koenker, Quantile Regression. Cambridge: Cambridge University Press, 2005.

R. Alhamzawi and K. Yu, “Conjugate Priors and Variable Selection for Bayesian Quantile Regression,” Comput. Stat. Data Anal., vol. 64, pp. 209–219, 2012, doi: https://doi.org/10.1016/j.csda.2012.01.014.

W. H. Greene, Econometric Analysis Internastional Edition. UK: Pearson Education, 2012.

G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning - with Applications in R. New York: Springer, 2013.

F. Mosteller and J. Tukey, Data Analysis and Regression: A Second Course in Statistics. Boston, USA: Addison-Wesley, 1977.

R. Koenker and G. Bassett, “Regression Quantiles,” Econometrica, vol. 46, no. 1, p. 33, 1978, doi: 10.2307/1913643.

R. Alhamzawi, “Tobit Quantile Regression with the adaptive Lasso penalty,” no. 1681 6870, pp. 1–19, 2013, [Online]. Available: https://www.researchgate.net/publication/258834905_Tobit_Quantile_Regression_with_the_adaptive_Lasso_penalty.

H. Kozumi and G. Kobayashi, “Sampling Methods for Bayesian Quantile Regression,” J. Stat. Comput. Simul., vol. 81, no. 11, pp. 1565–1578, 2011, doi: https://doi.org/10.1080/00949655.2010.496117.

D. F. Andrews and C. L. Mallows, “Scale Mixtures of Normal Distributions Author,” Society, vol. 36, no. 1, pp. 99–102, 2010.

D. van Ravenzwaaij, P. Cassey, and S. D. Brown, “A simple introduction to Markov Chain Monte–Carlo sampling,” Psychon. Bull. Rev., vol. 25, no. 1, pp. 143–154, 2018, doi: 10.3758/s13423-016-1015-8.

B. Walsh, “Markov Chain Monte Carlo and Gibbs Sampling,” Lect. Notes EEB 581, vol. 581, no. April, p. 24, 2004, [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.4064.


Article Metrics

Abstract view : 243 times
PDF - 66 times

DOI: https://doi.org/10.26714/jsunimus.10.2.2022.25-33

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Statistika Universitas Muhammadiyah Semarang

Editorial Office:
Department of Statistics
Faculty Of Mathematics And Natural Sciences
 
Universitas Muhammadiyah Semarang

Jl. Kedungmundu No. 18 Semarang Indonesia



Published by: 
Department of Statistics Universitas Muhammadiyah Semarang

View My Stats

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License