PENGUJIAN SIFAT MEKANIK IMPLAN PLATE DAN SEKRUP FIKSASI INTERNAL TULANG FEMUR DARI MATERIAL HIDROKSIAPATIT BOVINE DAN POLIMER BIODEGRADASI MENGGUNAKAN PRINTER 3D

Solechan ST MT(1*)


(1) Universitas Muhammadiyah Semarang
(*) Corresponding Author

Abstract


Abstrak

Kecelakan lalu lintas di Jawa Tengah menyumbang patah tulang atau fraktur 1.770 orang. Patah tulang yang sering terjadi pada bagian tulang femur atau paha. Pemulihan tulang femur retak atau fraktur mengunakan fiksasi internal plate dan sekrup. Implan plate dan sekrup dari logam memiliki kekurangan pada migrasi implan, ketidaknyamanan, nyeri, alergi, dan biaya yang besar. Dari kekurangan itu, sekarang dikembangkan material polimer biodegradasi. Kelebihan tanpa pengambilan pasca penyembuhan tulang, mengurangi biaya operasi, traumatik pasien, nyaman, dan tanpa nyeri, tetapi memiliki kekurangan pada kekuatan mekanis rendah dan kurang presisi. Dari latar belakang diatas, riset difokuskan pada pembuatan implan plate dan sekrup presisi tinggi dari data image CT-Scan pasien menggunakan mesin print 3D pada aplikasi tulang femur. Metode penelitian menggunakan metode screw extrusion untuk pembuatan filamen printer 3D untuk membuat implan fiksasi internal plate dan sekrup. Material yang digunakan PLLA, PLC, HA bovine dan PLA dengan pengujian sifat mekanik. Hasilnya untuk komposisi campuran filament biodegradasi untuk filamen yang paling optimal dimiliki specimen uji kode F1 dengan presentase kandungan polimer sintesis dan Ha Bovine 80:20. Densitas dan porositas terbaik dimiliki oleh spesimen uji kode F1/300N. Densitas  0,365 g/cm3 dengan porositas 2,750% menjadikan kekuatan tekuk lebih baik dan degrdasi materia llebih lama. Temperatur melting (Tm) yang sesuai dengan mesin printer 3D yaitu kode spesimen uji F3 pada temperatur melting 305˚C. Sehingga specimen uji ini support terhadap mesin printer 3D

Keywords


femur, filamen, implan, patah, tulang

Full Text:

PDF

References


ASTM D792 - 13 Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement.

ASTM-C20-92 Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water.

ASTM E1131 - 08 Standard Test Method for Compositional Analysis by Thermogravimetry

Adamczyk MJ, Odell T, Oka R, Mahar AT, Pring ME, Lalonde FD, Wenger DR, 2007, Biomechanical stability of bioabsorbable screws for fixation of acetabular osteotomies. J Pediatr Orthop;27:314-8.

Agrawal CM, Huang D, Schmitz JP, Athanasiou KA, 1997, Elevated temperature degradation of a 50:50 copolymer of PLA-PGA. Tissue Eng;3:345-52.

Alisdair R. Mac Leod, Pankaj Pankaj, Hamish A., Simpson R.W., 2012, Does screw-bone interface modeling matter in finite element analyses, Journal of Biomechanics, vol. 45, pp. 1712-1716.

Ali M.S., French T.A., Hastings G.W., Rae T., Rushton N., Ross E.R., etal, 1990 “Carbon fiber composite bone plate. Development, evaluation and early clinical experience”, Journal of Bone and Joint Surgery, vol.72,pp. 586-591.

Böstman O, Pihlajamäki H, 2000, Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. Biomaterials ;21:2615

Böstman O, Hirvensalo E, Partio E, Törmälä P, Rokkanen P, 1992, Resorbable rods and Böstman O, Pihlajamäki H, 1996, Routine implant removal after fracture surgery: a potentially reducible consumer of hospital resources in trauma units. J Trauma;41:846-9.

Boonthum Wongchai, 2012, The Effect of the Configuration of the Screw Fixation on the Interfragmentary Strain, American Journal of Applied Sciences, vol. 9, no. 6, pp. 842-845.

Chua, C.K., Leong, K.F., Lim, C.S., 2003., Rapid Prototyping Principles and Applications, 2nd ed, p.13, Singapore, WS Publishing Co.Pte.Ltd.

Chin-San Wu., 2003., Physical properties and biodegradability of maleated-polycaprolactone/starch composite., Polymer Degradation. 80-127–134.

Catatan medik Ruang Umar Rumah Sakit Roemani Semarang, 2011, Jumlah Pasien Patah Tulang untuk surgery, Humas RS Roemani Semarang.

Callister Jr, William D, 2009, Materials Science And Engineering An Introduction, 8th Edition, New Jersey : John Wiley & Sons, Inc, Hoboken

Dinas Kesehatan Provinsi Jawa Tengah, 2007, Jumlah pendertita patah tulang di Jawa Tengah dalam bentuk angka, Buku laporan tahunan Dinkes Jateng.

Goodship A.E., Kenwright J., 1985 , The influence of induced micro movement upon the healing of experimental tibial fractures, The Journal of Bone and Joint Surgery, (American) 0301620 8S/4114.

Gaston M.S., Simpson A.H.R.W., 2007, Inhibition of fracture healing, The Journal of Bone and Joint Surgery, British vol. 89-B, pp. 1553-1560.

Hutmacher DW, Zein I,Tan KC, Teoh SH., 2000., Fused deposition modeling of novel scaffolds architectures for tissue engineering applications. Biomaterials ;23:1169–85

Iwan Zein, Dietmar W. Hutmacherb, Kim Cheng Tanc, Swee Hin Teoha., 2002., Fused deposition modeling of novel scaffold architectures for tissue engineering applications., Biomaterials 23 (2002) 1169–1185., Elsevier

Iwan Zein , Hutmacher DW, Tan KC, Teoh SH., 2001., Fused deposition modeling of novel scaffolds architectures for tissue engineering applications. Biomaterials ;23:1169–85.

Inion OY, Lääkärinkatu, 2013, An Introduction to Biodegradable Polymers as Implant Materials, White Paper, Publisher: Inion, FIN 33520, Tampere, Finland

Joko Triyono, 2015, Terinspirasi Kelainan Tulang, Suara Merdeka Cetak, www.berita.suaramerdeka.com, diakses pada tanggal Kamis , 2 April 2015.

Juutilainen T, Pätiälä H, Ruuskanen M, Rokkanen P. Comparison of costs in ankle fractures treated with absorbable or metallic fixation devices. Arch Orthop Trauma Surg1997;116:204-8.

Karageorgiou V, Kaplan D., 2005., Porosity of 3D biomaterial scaffolds and osteogenesis., Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.

Kalita, S. J., Bose, S., Hosick, H. L. & Band yopadhyay, A., (2003). Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Materials Science & Engineering C-Biom imetic and Supramolecular Systems, Vol.23, No.5, pp. 611-620

Meskinfam M, Sadjadi MA, et.al., 2011., Biocompatibility evaluation of nano hydroxyapatite-starch biocomposites. J Biomed Nanotechnol 7 (3): 455-9.

Petteri Väänänen, 2009, Testing of Biodegradable Bone Fixation Implants, Doctoral di ssertati on, Department of Physics Uni versi ty of Kuopio, Publicati Ons C. Natural And Environmental Sciences 262.

Rokkanen PU, Böstman O, Hirvensalo E, Mäkelä EA, Partio EK, Pätiälä H, Vainionpää S, Vihtonen K, Törmälä P, 2000, Bioabsorbable fixation in orthopaedic

Saifudin Alie Anwar, Solechan, 2014, Analisa Karakteristik Dan Sifat Mekanik Scaffold Rekonstruksi Mandibula Dari Material Bhipasis Calsium Phospate Dengan Penguat Cangkang Kerang Srimping Dan Gelatin Menggunakan Metode Functionally Graded Material, Jurnal Snatif, Vol 1, No 1, 137-144

Wu HC, Shen FW, Hong X, Chang WV, Winet H, 2003, Monitoring the degradation process of biopolymers by ultrasonic longitudinal wave pulse-echo technique. Biomaterials;24 (22):3871-6


Article Metrics

Abstract view : 972 times
PDF - 187 times

DOI: https://doi.org/10.26714/traksi.21.1.2021.27-37

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 TRAKSI

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


TRAKSI : Majalah Ilmiah Teknik Mesin

ISSN : 1693-3451 (Pinted) e-ISSN : 2579-9738 (Online)

Published by: LP2M Unimus bekerjasama dengan APTI (Asosiasi Profesi Teknik Indonesia)  

 
ADDRESS

Jl. Kasipah No. 12 Semarang

E-mail: traksi@unimus.ac.id Call: 0248445768


Sponsors

Asosiasi Profesi Teknik Indonesia (APTI)

Website: www.apti.or.id