Sistem Monitoring Cuaca Multi-Node Berbasis IOT Pada Aplikasi Mobile

Mochammad Rizqi Fadli Assafi'i(1*), Bagus Adhi Kusuma(2)


(1) Universitas Amikom Purwokerto
(2) Universitas Amikom Purwokerto
(*) Corresponding Author

Abstract


Real-time weather monitoring has become an essential requirement for supporting various community activities, particularly in areas sensitive to weather fluctuations such as agriculture, disaster risk reduction, transportation, and outdoor activities. This study designs an Internet of Things (IoT)-based weather monitoring system with a multi-node approach to obtain a more precise picture of environmental conditions in an observation area. The developed system consists of three Wemos D1 Mini-based IoT nodes equipped with DHT11 sensors for temperature and humidity measurements, BMP280 for atmospheric pressure, LDR for light intensity, and a rain sensor. All data is sent to the Firebase Realtime Database as the main repository, while a MicroSD module serves as backup storage in case of network connection disruptions. A Flutter-based mobile application was developed to present monitoring data in both numerical and historical graphic formats from each node. Test results show that the system operates stably at 1–5 minute transmission intervals and is capable of producing uniform data across nodes. This system offers a reliable, accessible weather monitoring solution and has the potential to be developed for more in-depth analysis purposes.

Full Text:

PDF

References


A. K. Hassan, M. S. Saraya, A. M. T. Ali-Eldin, and M. M. Abdelsalam, “Low-Cost IoT Air Quality Monitoring Station Using Cloud Platform and Blockchain Technology,” Applied Sciences, vol. 14, no. 13, p. 5774, Jul. 2024, doi: 10.3390/app14135774.

Kurnia Mustika Wati, “Cyber Physical System For Autometed Weather Station And Agriculture Node In Smart Farming,” Globe: Publikasi Ilmu Teknik, Teknologi Kebumian, Ilmu Perkapalan, vol. 2, no. 1, pp. 13–27, Jan. 2024, doi: 10.61132/globe.v2i1.90.

C. M. Al Kalaany, H. N. Kimaita, A. A. Abdelmoneim, R. Khadra, B. Derardja, and G. Dragonetti, “The Potential of Low-Cost IoT-Enabled Agrometeorological Stations: A Systematic Review,” Sensors, vol. 25, no. 19, p. 6020, Oct. 2025, doi: 10.3390/s25196020.

G. Coulby, A. K. Clear, O. Jones, and A. Godfrey, “Low-cost, multimodal environmental monitoring based on the Internet of Things,” Build Environ, vol. 203, p. 108014, Oct. 2021, doi: 10.1016/j.buildenv.2021.108014.

R. Perkasa, R. Wahyuni, R. Melyanti, H. Herianto, and Y. Irawan, “Light Control Using Human Body Temperature Based on Arduino Uno and PIR (Passive Infrared Receiver) Sensor,” Journal of Robotics and Control (JRC), vol. 2, no. 4, 2021, doi: 10.18196/jrc.2497.

J. S. Botero-Valencia, M. Mejia-Herrera, and J. M. Pearce, “Low cost climate station for smart agriculture applications with photovoltaic energy and wireless communication,” HardwareX, vol. 11, p. e00296, Apr. 2022, doi: 10.1016/j.ohx.2022.e00296.

P. Ramesh, N. Vidhya, P. T. V Bhuvaneswari, and S. Parveen, “I-SOEWM: IoT Based Solar Energized Weather Monitoring System,” Indian J Sci Technol, vol. 16, no. 20, pp. 1505–1515, May 2023, doi: 10.17485/IJST/v16i20.287.

G. Abdurrazaq, D. Latika Herda, and P. Negeri Padang, “IMPLEMENTATION OF THE INTERNET OF THINGS (IOT) ON AN AUTOMATIC WEATHER STATION (AWS) WEATHER MONITORING TOOL TO SUPPORT FISHERMAN ACTIVITIES ON THE COAST,” 2024.

T. Kozlowski, O. Noran, and J. Trevathan, “Designing an Evaluation Framework for IoT Environmental Monitoring Systems,” Procedia Comput Sci, vol. 219, pp. 220–227, 2023, doi: 10.1016/j.procs.2023.01.284.

Widayanti and A. Fajarrohman, “Design and Implementation of a Weather Monitoring System Base on IoT Blynk Display and Solar Panel,” Sunan Kalijaga Journal of Physics, vol. 6, no. 2, pp. 47–52, Nov. 2024, doi: 10.14421/physics.v6i2.5209.

J. Waworundeng, “IoT-based Environmental Monitoring with Data Analysis of Temperature, Humidity, and Air Quality,” CogITo Smart Journal, vol. 10, no. 1, pp. 271–284, Jun. 2024, doi: 10.31154/cogito.v10i1.708.692-705.

T. Toullier and J. Dumoulin, “Comparison of Local Weather Sensors Use versus Online Data for Outdoor Monitoring Correction,” in The 17th International Workshop on Advanced Infrared Technology and Applications, Basel Switzerland: MDPI, Nov. 2023, p. 35. doi: 10.3390/engproc2023051035.

P. Megantoro, B. A. Pramudita, P. Vigneshwaran, A. Yurianta, and H. A. Winarno, “Real-time monitoring system for weather and air pollutant measurement with html-based ui application,” Bulletin of Electrical Engineering and Informatics, vol. 10, no. 3, pp. 1669–1677, Jun. 2021, doi: 10.11591/eei.v10i3.3030.

J. Ostrometzky and H. Messer, “Opportunistic Weather Sensing by Smart City Wireless Communication Networks,” Sensors, vol. 24, no. 24, p. 7901, Dec. 2024, doi: 10.3390/s24247901.

A. Zafra-Pérez, J. Medina-García, C. Boente, J. A. Gómez-Galán, A. Sánchez de la Campa, and J. D. de la Rosa, “Designing a low-cost wireless sensor network for particulate matter monitoring: Implementation, calibration, and field-test,” Atmos Pollut Res, vol. 15, no. 9, p. 102208, Sep. 2024, doi: 10.1016/j.apr.2024.102208.

R. M. Woo-García et al., “Implementation of a Wireless Sensor Network for Environmental Measurements,” Technologies (Basel), vol. 12, no. 3, p. 41, Mar. 2024, doi: 10.3390/technologies12030041.

M. Fahim, A. El Mhouti, T. Boudaa, and A. Jakimi, “Modeling and implementation of a low-cost IoT-smart weather monitoring station and air quality assessment based on fuzzy inference model and MQTT protocol,” Model Earth Syst Environ, vol. 9, no. 4, pp. 4085–4102, Nov. 2023, doi: 10.1007/s40808-023-01701-w.

D. Kairuz-Cabrera, V. Hernandez-Rodriguez, O. Schalm, A. Martinez, P. M. Laso, and D. Alejo-Sánchez, “Development of a Unified IoT Platform for Assessing Meteorological and Air Quality Data in a Tropical Environment,” Sensors, vol. 24, no. 9, p. 2729, Apr. 2024, doi: 10.3390/s24092729.

Ş. M. Kaya, B. İşler, A. M. Abu-Mahfouz, J. Rasheed, and A. AlShammari, “An Intelligent Anomaly Detection Approach for Accurate and Reliable Weather Forecasting at IoT Edges: A Case Study,” Sensors, vol. 23, no. 5, p. 2426, Feb. 2023, doi: 10.3390/s23052426.

A. Albuali, R. Srinivasagan, A. Aljughaiman, and F. Alderazi, “Scalable Lightweight IoT-Based Smart Weather Measurement System,” Sensors, vol. 23, no. 12, p. 5569, Jun. 2023, doi: 10.3390/s23125569.

P. Megantoro, S. A. Aldhama, G. S. Prihandana, and P. Vigneshwaran, “IoT-based weather station with air quality measurement using ESP32 for environmental aerial condition study,” TELKOMNIKA (Telecommunication Computing Electronics and Control), vol. 19, no. 4, p. 1316, Aug. 2021, doi: 10.12928/telkomnika.v19i4.18990.

K. Ioannou, D. Karampatzakis, P. Amanatidis, V. Aggelopoulos, and I. Karmiris, “Low-Cost Automatic Weather Stations in the Internet of Things,” Information, vol. 12, no. 4, p. 146, Mar. 2021, doi: 10.3390/info12040146.


Article Metrics

Abstract view : 31 times
PDF - 10 times

DOI: https://doi.org/10.26714/jkti.v4i1.20430

Refbacks

  • There are currently no refbacks.


=======================================================================================

Penerbit:

  • JKTI | Jurnal Komputer dan Teknologi Informasi
  • Program Studi S1 Informatika,  Unimus| Universitas Muhammadiyah Semarang
  • Sekretariat: Gedung Kuliah Bersama II (GKB II) Lantai 7,  Jl. Kedungmundu Raya No 18 Semarang
  • email: jkti@unimus.ac.id | informatika@unimus.ac.id, Phone: + +62 813 2504 3677
  • e-ISSN: 2986-7592

Paper Template: Download

View My Stats

------------------------------------------------------------------------------------------------------------------------------------------------------