KLASIFIKASI MOTIF BATIK INDONESIA MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK (CNN)
(1) 
(2) 
(3) 
(4) 
(5) 
(*) Corresponding Author
Abstract
Batik is one of Indonesia’s cultural heritages, known for its diverse motifs, patterns, and colors, and has been recognized by UNESCO as an intangible cultural heritage of humanity. Despite this recognition, efforts to promote and preserve batik, particularly among younger generations and the global community, continue to face significant challenges. This study aims to develop a web-based Indonesian batik motif classification system utilizing machine learning technology, specifically Convolutional Neural Networks (CNN) with the EfficientNetB0 architecture. The system is designed to identify and classify 20 batik motif classes based on visual characteristics such as patterns, colors, and shapes. Through this interactive web-based platform, users can explore and learn about different types of batik, thereby fostering greater understanding and appreciation of this cultural heritage. The training process demonstrated notable improvements in accuracy, with the final model achieving a test accuracy of 82.5% and an average precision, recall, and F1-score of approximately 0.83. These results indicate that the developed system holds substantial potential for digital batik preservation and promotion, serving as an effective educational tool for a wider audience in the era of information technology.
Full Text:
PDFReferences
F. Hasyim, K. Malik, F. Rizal, and Yudistira, “Implementasi algoritma convolutional neural networks (cnn) untuk klasifikasi batik,” COREAI: Jurnal Kecerdasan Buatan, Komputasi dan Teknologi Informasi, vol. 2, no. 2, pp. 40–47, 2022, doi:10.33650/coreai.v2i2.3365.
L. Hakim, H. R. Rahmanto, S. P. Kristanto, and D. Yusuf, “Klasifikasi citra motif batik banyuwangi menggunakan convolutional neural network,” Jurnal Teknoinfo, vol. 17, no.1, p. 203, 2023, doi: 10.33365/jti.v17i1.2342.
F. N. Cahya, N. Hardi, D. Riana, and S. Hadianti, “Klasifikasi penyakit mata menggunakan convolutional neural network ( cnn ),” vol. 10, pp. 618–626, 2021.
N. P. Sutramiani, I. K. G. D. Putra, and M. Sudarma, “Local adaptive thresholding pada preprocessing citra lontar aksara bali,” vol. 14, no. 1, pp. 27–30, 2015.
Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553. pp. 436–444, 2015. doi: 10.1038/nature14539.
F. U. Larasati, N. Aini, and A. H. S. Irianti, “Proses pembuatan batik tulis remekan dingantang,” Prosiding Pendidikan Tata Boga Busana, p. 8, 2021.
Y. Heryadi and T. Wahyono, Dasar-dasar deep learning dan implementasi. Yogyakarta: GAVA MEDIA, 2021.
Article Metrics
Abstract view : 18 timesPDF - 2 times
DOI: https://doi.org/10.26714/jkti.v3i2.18627
Refbacks
- There are currently no refbacks.
=======================================================================================
Penerbit:
- JKTI | Jurnal Komputer dan Teknologi Informasi
- Program Studi S1 Informatika, Unimus| Universitas Muhammadiyah Semarang
- Sekretariat: Gedung Kuliah Bersama II (GKB II) Lantai 7, Jl. Kedungmundu Raya No 18 Semarang
- email: informatika@unimus.ac.id, Phone: + +62 813 2504 3677
- e-ISSN: 2986-7592
Paper Template: Download
------------------------------------------------------------------------------------------------------------------------------------------------------