Prediksi Kelulusan Siswa Menggunakan Logistic Regression dan Optimasi Adam

Elvina Sulistya(1*), Ahmad Ilham(2)


(1) Universitas Muhammadiyah Semarang
(2) 
(*) Corresponding Author

Abstract


Prediksi performa akademik siswa memainkan peran penting dalam evaluasi pendidikan. Artikel ini membahas prediksi kelulusan siswa berdasarkan data performa akademik menggunakan Logistic Regression yang dioptimasi dengan Adam. Menggunakan dataset Student Performance yang memuat informasi mengenai demografi siswa, faktor sosial, serta nilai akademik. Model Logistic Regression dibangun untuk memprediksi kelulusan dengan target nilai akhir siswa. Hasil evaluasi menunjukkan bahwa kombinasi Logistic Regression dan optimasi Adam memberikan hasil prediksi yang akurat dan efisien, dengan metrik evaluasi seperti akurasi, precision, recall, serta visualisasi seperti confusion matrix yang mendukung analisis lebih lanjut.

Full Text:

PDF

References


J. R. Quinlan, "Induction of Decision Trees," Machine Learning, vol. 1, no. 1, pp. 81–106, 1986. doi: 10.1023/A:1022643204877.

S. Hussain, D. Zhu, N. Zhang, dan L. Abidi, "Student Academic Performance Prediction using Logistic Regression, K-Means and Decision Tree," Proceedings of the 2020 IEEE Conference on Big Data, pp. 1809-1812, 2020. doi: 10.1109/BigData50022.2020.9378476.

R. Asif, A. Merceron, and S. A. Khan, "Predicting student academic performance using data from Learning Management Systems (LMS)," Educational Data Mining, vol. 1, no. 2, pp. 80–89, 2017.

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge University Press, 2004.

D. P. Kingma and J. Ba, "Adam: A Method for Stochastic Optimization," arXiv preprint arXiv:1412.6980, 2014. [Online]. Available: https://arxiv.org/abs/1412.6980

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 2016.

S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learning: From Theory to Algorithms. Cambridge, U.K.: Cambridge University Press, 2014.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge, MA, USA: MIT Press, 2016.

J. Bergstra and Y. Bengio, "Random Search for Hyper-Parameter Optimization," Journal of Machine Learning Research, vol. 13, no. 1, pp. 281–305, 2012.

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge University Press, 2004.

J. R. Quinlan, "Induction of Decision Trees," Machine Learning, vol. 1, no. 1, pp. 81–106, 1986. doi: 10.1023/A:1022643204877.

P. Domingos, "A Few Useful Things to Know About Machine Learning," Communications of the ACM, vol. 55, no. 10, pp. 78–87, 2012. doi: 10.1145/2347736.2347755.

F. Pedregosa et al., "Scikit-learn: Machine Learning in Python," Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

D. Zhang and W. S. Lee, "Learning classifiers without negative examples: A reduction approach," in Proceedings of the 2005 SIAM International Conference on Data Mining, 2005, pp. 617–621. doi: 10.1137/1.9781611972757.69.

Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436–444, 2015. doi: 10.1038/nature14539.

R. Kohavi and F. Provost, "Glossary of terms," Machine Learning, vol. 30, no. 2, pp. 271–274, 1998. doi: 10.1023/A:1017181826899.

R. Tibshirani, "Regression shrinkage and selection via the lasso: a retrospective," Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 73, no. 3, pp. 273–282, 2011. doi: 10.1111/j.1467-9868.2011.00771.x.

L. Bottou, "Large-scale machine learning with stochastic gradient descent," in Proceedings of COMPSTAT'2010, 2010, pp. 177–186. doi: 10.1007/978-3-7908-2604-3_16.

Y. Freund and R. E. Schapire, "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting," Journal of Computer and System Sciences, vol. 55, no. 1, pp. 119–139, 1997. doi: 10.1006/jcss.1997.1504.

G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006. doi: 10.1162/neco.2006.18.7.1527.

D. P. Bertsekas, "Incremental least-squares methods and the extended Kalman filter," SIAM Journal on Optimization, vol. 6, no. 3, pp. 807–822, 1996. doi: 10.1137/0806044.

C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, no. 3, pp. 273–297, 1995. doi: 10.1007/BF00994018.

S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997. doi: 10.1162/neco.1997.9.8.1735.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, "Densely Connected Convolutional Networks," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708. doi: 10.1109/CVPR.2017.243.

M. Abadi et al., "TensorFlow: Large-scale machine learning on heterogeneous systems," Software available from tensorflow.org, 2015. [Online]. Available: https://www.tensorflow.org/


Article Metrics

Abstract view : 34 times
PDF - 8 times

DOI: https://doi.org/10.26714/jkti.v3i1.16189

Refbacks

  • There are currently no refbacks.


=======================================================================================

Penerbit:

  • JKTI | Jurnal Komputer dan Teknologi Informasi
  • Program Studi S1 Informatika,  Unimus| Universitas Muhammadiyah Semarang
  • Sekretariat: Gedung Kuliah Bersama II (GKB II) Lantai 7,  Jl. Kedungmundu Raya No 18 Semarang
  • email: informatika@unimus.ac.id, Phone: + +62 813 2504 3677
  • e-ISSN: 2986-7592

Paper Template: Download

View My Stats

------------------------------------------------------------------------------------------------------------------------------------------------------