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Abstract: Stunting is a critical global health challenge that 
undermines children’s physical growth and cognitive 
development, particularly in developing countries. Accurate 
classification of toddlers’ nutritional status is essential for early 
intervention but is complicated by two challenges: the 
imbalanced distribution of classes, where stunted and tall 
categories are underrepresented, and the ordinal nature of 
nutritional status labels. This study employs XGBoost 
combined with a Binary Decomposition approach and Enhanced 
Instance Weighting to address these issues. Secondary data from 
100 respondents in Sumberputih Village, Wajak District, were 
analyzed using four predictors: economic status, health services, 
children’s diet, and environment. The dataset was divided into 
80% training and 20% testing portions, and model performance 
was assessed with metrics suitable for imbalanced ordinal data. 
Results showed that the model achieved 75% accuracy, an 
ordinal MAE of 0.25, a QWK of 0.22, and a Macro-F1 score of 
0.39. Variable importance analysis highlighted health services 
as the primary determinant for stunting detection, while 
environmental factors were most influential in identifying tall 
status. These findings suggest that XGBoost with Binary 
Decomposition Enhanced Instance Weighting is effective for 
handling imbalanced ordinal data and provides valuable insights 
for supporting stunting prevention and targeted public health 
interventions. 

  

1. INTRODUCTION  
The nutritional status of toddlers, particularly regarding stunting, is one of the most 

pressing global health issues, affecting both physical and cognitive development, especially in 
developing countries [1], [2], [3], [4], [5]. Stunting is defined as a failure to grow experienced 
by toddlers due to chronic malnutrition, resulting in a height significantly below the WHO 
standard for their age  [3], [6], [7]. According to the latest WHO data, in 2024 an estimated 
150.2 million children under five worldwide were experiencing stunting. Global data from 
2022 also indicated that approximately 148.1 million children (22.3%) were stunted[3], [8], 
[9], [10]. The stunting problem is not only a national health concern but also part of the global 
agenda within the Sustainable Development Goals (SDGs), particularly SDG 2 (Zero Hunger) 
and SDG 3 (Good Health and Well-being).  
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One of the main challenges in addressing stunting is the classification of toddlers’ 
nutritional status when dealing with imbalanced data. In this context, the stunting class is much 
smaller in number compared to toddlers with normal or tall nutritional status. Such imbalance 
creates challenges for classification techniques, as models tend to favor the majority class and 
overlook the minority class, leading to biased and inaccurate predictions, especially for 
minority data[11], [12], [13], [14]. 

Furthermore, toddlers’ nutritional status data are ordinal, meaning the classes have an 
inherent order (stunting < normal < tall). However, most standard classification algorithms 
treat each category as an independent nominal class without considering their order. This 
ordinal nature requires a more suitable approach that can leverage the order information for 
more accurate and relevant classification results [15], [16].  

While ordinal logistic regression is a popular method for ordinal data classification, it 
may not perform as well when handling imbalanced data, as it doesn't provide explicit 
mechanisms to address the class imbalance [17], [18]. In contrast, XGBoost offers greater 
flexibility through weighting mechanisms that can mitigate imbalance and improve sensitivity 
to minority classes [19], [20]. Furthermore, when combined with the binary decomposition 
approach, XGBoost has been extended to effectively capture the ordinal structure of data [21]. 

Building on these strengths, this study develops an Ordinal XGBoost framework that 
integrates binary decomposition with Enhanced Instance Weighting to better handle 
imbalanced ordinal data. By improving the accuracy and interpretability of nutritional status 
classification, the proposed approach contributes to public health monitoring and supports the 
achievement of SDG targets through stronger evidence for targeted stunting interventions. 

 

2. LITERATURE REVIEW 
2.1. Ordinal Classification and Class Imbalance Challenges 

Ordinal classification is a specific variant of multi-class classification in which the 
labels possess a natural order, but the distance between classes is not necessarily numerically 
defined [22]. For example, the categories very low < low < medium < high < very high have 
an inherent order, yet the “distance” between categories is not constant. 

Formally, if 𝐶	 = 	 {𝑐!, 𝑐", … , 𝑐#} a is the set of ordinal classes, there exists a total order 
relation as expressed in Equation (2.1) that must be considered [23], [24]. 

𝑐! <	𝑐" < ⋯ <	𝑐#               (2.1) 

 On the other hand, class imbalance occurs when the distribution of data among classes 
is not uniform [25]. In ordinal classification, imbalance can appear in several forms, such as: 
a) minority at the lower extreme (extreme low), e.g., the number of stunted toddlers being 
significantly smaller than normal; b) minority at the upper extreme (extreme high), e.g., 
children with heights far above average being rare; and c) minority in the middle class, which, 
although rare, can occur in transitional categories. 

Class imbalance in ordinal data has a dual impact: a) bias toward the majority class – 
the model tends to predict the majority class, sacrificing accuracy for minority classes; and b) 
degradation of order information. If extreme classes are rare, the model struggles to learn the 
differences between ordinal thresholds, leading to inconsistent order in predictions [16], [26]. 

These conditions demand the use of classification methods that can both preserve the 
order information between classes and remain robust to class imbalance. One algorithm 
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meeting both criteria is Extreme Gradient Boosting (XGBoost) with the binary decomposition 
approach, which applies the principles of gradient boosting with loss function optimization and 
decision tree regularization. Additionally, to further address the challenge of class imbalance, 
Enhanced Instance Weighting (EIW) can be incorporated into the XGBoost framework. EIW 
dynamically adjusts instance weights during training, giving more importance to 
underrepresented or misclassified instances, thereby ensuring that the model gives adequate 
focus to minority class samples and improving overall model performance in imbalanced 
datasets.  

 
2.2. XG Boost 

Extreme Gradient Boosting (XGBoost) is an advanced ensemble learning algorithm 
based on gradient boosting decision trees [27]. Given a dataset 𝐷 = {(𝒙$ , 𝑦!)}, where 𝒙$ ∈ ℝ% 
denotes the feature vector and 𝑦$ ∈ ℝ the corresponding label, XGBoost constructs a strong 
learner as an additive ensemble of regression trees shown in Equation (2.2). 

𝑦2$ = ∑ 𝑓&(𝒙$)#
&'! , 𝑓& ∈ ℱ             (2.2) 

Where ℱ is the functional space of regression trees and K is the number of trees. Since 
ℱ represents the functional space of regression trees, which encompasses all the possible 
functions that can be formed by the decision trees in the model, the learning objective in 
XGBoost aims to find the optimal combination of these functions. Specifically, XGBoost 
strives to identify the best set of trees 𝑓& ∈ ℱ where 𝑘 = 1,2,3, … , 𝐾 that minimize a combined 
loss function and regularization term. By doing so, XGBoost not only improves the model’s 
predictive performance but also controls the complexity of the functional space, ensuring that 
the model is both accurate and capable of generalizing well to new, unseen data. 

The learning objective combines a differentiable convex loss function 𝑙(𝑦!, 𝑦2$) that 
measures the difference between the prediction and the true label, and a regularization term 
Ω(𝑓&) that penalizes model complexity shown in Equation (2.3). 

ℒ(𝜙) = ∑ 𝑙(𝑦(, 𝑦2$))
$'! +∑ Ω(𝑓&)#

*'!          (2.3)  

The regularization term is defined in Equation (2.4). 

Ω(𝑓) = γT + !
"
𝜆 ∑ 𝑤+",

+'!            (2.4) 

where 𝑇 denotes the number of leaves, 𝑤+ is the score on leaf 𝑗, and 𝛾, 𝜆 are 
regularization parameters that control model complexity. To optimize the objective, XGBoost 
employs an additive training strategy. At the 𝑡-th	 iteration, a new tree 𝑓* is added to minimize 
the second-order Taylor approximation of the objective in Equation (2.5). 

ℒ (*) ≈ ∑ I𝑙J𝑦$ , 𝑦2$
(*/!)K + 𝑔$𝑓*(𝑥$) +

!
"
ℎ$𝑓*"(𝑥$)O)

$'! + Ω(𝑓*)    (2.5) 

where 

𝑔$ =
𝜕𝑙J𝑦(, 𝑦2$

(*/!)K

𝜕𝑦2$
(*/!) , ℎ$ =

𝜕"𝑙J𝑦(, 𝑦2$
(*/!)K

𝜕J𝑦2$
(*/!)K

"  
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represent the first and second order gradients, respectively. The use of second-order 
information allows XGBoost to achieve both accuracy and computational efficiency, 
distinguishing it from traditional gradient boosting algorithms. The loss function 𝑙(𝑦!, 𝑦2$) is 
modified to account for ordinal distances, such as through ordinal logistic loss or proportional 
odds penalty, where errors between adjacent classes receive lower penalties than errors 
involving large jumps [21]. Considering ordinal distances can also be achieved using the binary 
decomposition approach.  

 
2.3. XGBoost with Binary Decomposition 

Frank dan Hall [16] proposed the Binary Decomposition approach, which transforms 
an ordinal classification problem with 𝑀 classes into a series of 𝑀 − 1 binary classification 
tasks. Suppose the ordinal classes are 𝑌 ∈ 	 {𝑐!, 𝑐", … , 𝑐0}} with order 𝑐! <	𝑐" < ⋯ <	𝑐0, so 
for every threshold 𝑘 subproblem is created as in Equation (2.6), 

𝑓&:		{𝑌 ≤ 	 𝑐&}	vs		{𝑌	 > 	 𝑐&}, 𝑘 = 1,… ,𝑀 − 1                    (2.6) 

where: 

𝑓&: the binary model for the 𝑘-th threshold 

{𝑌 ≤ 𝑐&}: the positive class (1),  

{𝑌 > 	 𝑐&}: the negative class (0). 

Then, cumulative binary labels are created for each data point (𝑥$ , 𝑦$) as shown in 
Equation (2.7). 

𝑦$,& 		= 	 Y
1, if	𝑦$ ≤ 𝑐&
0, if	𝑦$ > 𝑐&

               (2.7) 

with: 

𝑦$,& = 1 if the original class of 𝑦$ is at or bel the threshold 𝑐&. 

𝑦$,& = 0 if the original class of 𝑦$  is above the threshold 𝑐&. 

This transforms the ordinal regression problem into 𝑀 − 1 binary classification problems. For 
each binary classification task 𝑘, the prediction model shown in Equation (2.8). 

𝑦2$,& = ∑ 𝑓*,&(𝒙$),
*'!        (2.8) 

Where 𝑓*,&(𝒙$) represents the 𝑡-th tree in the 𝑘-th binary classifier, dan 𝑇 is the number of trees. 
The goal is to minimize the following objective function in Equation (2.9) for each binary 
classifier 𝑘. 

ℒ&(𝜙&) = ∑ ℒ2$)(𝑦$,& , 𝑦2$,&))
$'! +∑ Ω(𝑓*,&),

*'!      (2.9) 

Where ℒ2$)(𝑦$,& , 𝑦2$,&) is the binary cross entropy loss for 𝑘-th classifier, and Ω(𝑓*,&) is the 
regularization term. The binary cross entropy liss is defined as Equation (2.10) 

ℒ2$)]𝑦$,& , 𝑦2$,&^ = −_𝑦$,& log]𝑦2$,&^ + ]1 − 𝑦$,&^log	(1 − 𝑦2$,&)c 
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where 𝑦$,& is the binary target for the 𝑘-th classifier, and 𝑦2$,& is the predicted probability that 
𝑦$ ≤ 𝑐&. For the overall XGBoost objective function with binary decomposition, we sum the 
individual binary classification losses across all 𝑀 − 1 classifiers shown in Equation (1.10) 

ℒ(𝜙) = ∑ ]∑ ℒ2$)(𝑦$,& , 𝑦2$,&))
$'! + ∑ Ω(𝑓*,&),

*'! ^0/!
&'!      (2.10) 

This combined objective is minimized to find the optimal set of trees 𝑓*,& for each of 
the binary tasks 𝑘. To address the challenges of imbalanced data, Enhanced Instance Weighting 
(EIW) can be used in XGBoost by adjusting the instance weights for each data point based on 
its class distribution or difficulty level. This adjustment increases the importance of minority 
class instances, allowing the model to focus more on them during training. The objective 
function for those shown in Equation (2.11). 

ℒ(𝜙) = ∑ ]∑ 𝑤$ℒ2$)(𝑦$,& , 𝑦2$,&))
$'! + ∑ Ω(𝑓*,&),

*'! ^0/!
&'!     (2.11) 

𝑤$ is the instance weights, where 𝑤$ =
)
)!" 	

, 𝑛 is the number of samples and 𝑛4" is the number 

of samples in the class of 𝑦$. This ensures that the minority class receives a larger weight, 
helping the model to pay more attention to the minority class during training. For imbalanced 
datasets, the majority class will have smaller weights. 

 
2.4. Evaluation Metrics for Ordinal Classification 

Evaluating an ordinal classification model requires metrics that not only measure 
prediction correctness but also respect the inherent class order and the impact of errors across 
classes [24]. In this study, four primary metrics were used: Accuracy, Ordinal Mean Absolute 
Error (MAE), Quadratic Weighted Kappa (QWK), and Macro-F1. 

a. Accuracy 
measures the proportion of correct predictions over total test data Equation (2.12). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 = ∑ 𝟏(47"'4")#
"$%

8
              (2.12) 

where: 

𝑁: number of samples, 

𝑦$: actual label/category, 

𝑦2$: predicted label/category, 

𝟏(⋅): indicator function, which equals 1 if the condition is true and 0 otherwise. 
 

b. Ordinal Mean Absolute Error (MAE)  

The MAE for ordinal data measures the average absolute distance between the actual 
and predicted labels. MAE accounts for the distance between classes, so errors across distant 
classes (e.g., 0 → 2) receive a larger penalty compared to closer errors (e.g., 0 → 1), as shown 
in Equation (2.13) [28]. 

MAE9:; =
!
8
∑ |𝑦$ − 𝑦2$|8
$'! J1 − 𝑡$

(&)K log(1 −𝑝$
(&))       (2.13) 
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where: 

𝑁: number of samples, 

𝑦$: actual label/category, 

𝑦2$: predicted label/category, 

𝑡$
(&) = 1 if the original class of 𝑦$ is at or below the threshold 𝑐& 

𝑝$
(&) = 𝜎 J𝐹(&)(𝑥$)K =

!

!	<	=&'
())(+")

: cumulative probability 𝑃(𝑌 ≤ 	 𝑐& ∣ 𝑥$) 

 
c. Quadratic Weighted Kappa (QWK) 

QWK measures the level of agreement between predictions and actual labels, applying 
a quadratic penalty for distant errors [29], [30], [31], [32]. QWK ranges from −1 (complete 
disagreement) to 1 (perfect agreement), with 0 indicating performance equivalent to random 
guessing. QWK is calculated using Equation (2.14) 

𝑄𝑊𝐾 = 1 −
∑ >",?",	",
∑ >",@",	",

               (2.14) 

where: 

𝑊$+ =
(𝑖 − 𝑗)"

(𝐾 − 1)" 

𝑂$+: number of observations with actual label/category 𝑖 and predicted label/category 𝑗 

𝐸$+: number of observations expected under random distribution. 

 
d. Macro-F1 Score 

Macro-F1 calculates the average F1-score per class without considering class 
proportions [33], [34]. is more representative for imbalanced data because it assigns equal 
weight to each class, ensuring minority class performance is monitored. Macro-F1 is calculated 
using Equation (2.15). 

F1& =
"∙B:CD(E(9F-∙GCDHII-	
B:CD(E(9F-<GCDHII-

               (2.15) 

𝑀𝑎𝑐𝑟𝑜	𝐹1 =
1
𝐾|F1&

#

&'!

 

where 

PrecisionJ =
𝑇𝑃&

𝑇𝑃& + 𝐹𝑃&
, 

RecallJ =
𝑇𝑃&

𝑇𝑃& + 𝐹𝑃&
 

𝑇𝑃&: True Positive for the 𝑘-th class 
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𝐹𝑃&: False Positive for the 𝑘-th class 

𝐹𝑁&: False Negative for the 𝑘-th class 
 

3. METHODOLOGY 
3.1. Research Data 

The data utilized in this study is secondary data sourced from previous research 
[35].The study's population consisted of mothers with young children in Wajak district, while 
the sample was drawn from mothers with young children in Sumberputih village. A stratified 
random sampling method was applied, which is a probability sampling technique where the 
population is divided into subgroups or strata based on specific characteristics. A random 
sample is then selected from each stratum to represent the entire population. The sample size 
was calculated using the Slovin formula, with a 10% margin of error and an 80% anticipated 
response rate, considering the total population of 389.  

𝑛 =
𝑁

1 + 𝑁(𝑒")
1
𝑟𝑟 =

389
1 + 389(0,8")

1
0,8 

= 99,437 ≈ 100 
The sample size for this study was 100 respondents. The research instrument underwent 

testing for validity and reliability. These two concepts are essential in questionnaire design, 
ensuring that the instrument measures what it is intended to and yields consistent results. 
Validity refers to the degree to which the questionnaire accurately measures the intended 
construct, while reliability refers to the consistency of the results across time, items, or raters. 
The data structure in this study is presented in Table 1. 

Table 1. Data Structure 

No. X1 X2 X3 X4 Y 

1 3.447 3.262 3.502 3.213 2 

2 3.712 3.931 3.459 3.231 3 
3 2.738 2.774 2.905 2.532 1 
4 3.436 3.093 3.324 3.150 2 

5 3.472 3.216 3.483 3.562 2 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

100 2.978 3.152 2.829 3.715 2 

Based on Table 1, The predictor variables in this study included Economic Status (X1), 
Health Services (X2), Children's Diet (X3), and Environment (X4). The response variable was 
the Nutritional Status of Toddlers (Y), categorized into three groups: stunted, normal, and tall, 
represented by categories 1, 2, and 3, respectively.  
3.2.  Research Stages 

The research was conducted in several systematic stages to ensure methodological rigor 
and reproducibility. The research stage shown in Figure 1.  
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Fig 1. Research Flowchart 

 
4. RESULTS AND DISCUSSION 
4.1. Descriptive Statistics 

The percentage of toddlers with stunted, normal, and tall nutritional status is presented 
in Figure 2. 

 
Fig 2. Percentage of Toddler Nutritional Status Categories 

20%

70%

10%

Nutritional Status Percentage

Stunted
Normal
Tall
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Based on Figure 2, the percentage of toddlers with stunting is 20%, those with normal 
height is 70%, and those with tall status is 10%. This condition indicates that the nutritional 
status of toddlers in Sumberputih Village is imbalanced. 
4.2. XGboost Result 

After the data were transformed through binary decomposition, they were divided into 
training and testing sets, followed by the calculation of Enhanced Instance Weighting. The 
values of Enhanced Instance Weighting are presented in Table 2. 

Table 2. Data Structure and Instance Weighting Training Data 

No. X1 X2 X3 X4 Y Y1 Y2 W1 W2 

1 2.309 3.068 2.748 2.913 0 1 1 2.5 0.563 
2 2.116 2.708 3.261 2.585 1 0 1 0.625 0.563 

3 3.565 3.217 4.188 3.663 1 0 1 0.625 0.563 
4 3.447 3.761 3.649 3.685 1 0 1 0.625 0.563 

5 3.189 3.316 3.087 3.147 1 0 1 0.625 0.563 
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

80 2.776 3.219 3.137 3.403 0 1 1 2.5 0.563 

Table 2 presents the data structure after binary decomposition in the training data along 
with the Instance Weighting values. The variables include Economic Status (X1), Health 
Services (X2), Children's Diet (X3), and Environment (X4), dan Nutritional Status of Toddlers 
(Y) categorized into three groups: stunted (0), normal (1), and tall (2). Y1 and epresent the 
outcomes of the binary decomposition, where Y1 denotes the response group for stunted (1) 
versus normal and tall (0), and Y2 denotes the response group for stunted and normal (1) versus 
tall (0). W1 corresponds to the Instance Weighting for Y1 and W2 corresponds to the Instance 
Weighting for Y2. 

XGBoost results from the training data for binary decomposition subtask 1 (Y1) are 
presented as follows. 

 
(a) 

 
(b) 
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(c) 

Fig 3. Decision Tree for Subtask 1 (Y1) (a) first iteration, (b) second iteration, (c) third 
iteration 

Figure 3 presents the visualization of the decision tree for the first three iterations. In 
subtask 1, a total of 79 iterations were performed. The most important variables obtained from 
the decision tree for subtask 1, in order of important, were Health Services (X2), Economic 
Status (X1), Environment (X4), dan Children's Diet (X3). 

he XGBoost results from the training data for the binary decomposition of subtask 2 
(Y2) are presented as follows. 

 
(a) 

 
(b) 

 
(c) 

Fig 4. Decision Tree for Subtask 2 (Y2) (a) first iteration, (b) second iteration, (c) third 
iteration 

https://jurnal.unimus.ac.id/index.php/statistik


 First Author ET AL 

55 | https://jurnal.unimus.ac.id/index.php/statistik 
   [DOI: 10.14710/JSUNIMUS.13.1.2025.45-60] 
 

Figure 4 illustrates the visualization of the decision tree during the first three iterations. 
In subtask 2, a total of 187 iterations were performed. The most important variables obtained 
from the decision tree for subtask 2, in order of importance, were Environment (X4), Children's 
Diet (X3), Health Services (X2), dan Economic Status (X1). 

The decision tree models from each subtask were then tested on the testing data to 
obtain prediction results. The predictions from subtask 1, subtask 2, and their combined 
outcomes are presented in Table 3. 

Table 3. Data Test Predicted 

No. Y�! 	 Y�"	 Y�	

1 0 0 2 

2 1 0 1 
3 1 0 1 

4 1 0 1 
5 1 0 1 
⋮ ⋮ ⋮ ⋮ 

20 1 0 1 

Table 3 presents the prediction results on the testing data for subtask 1 and subtask 2. 
In subtask 1, a prediction value of 1 indicates stunting, while a value of 0 indicates either 
normal or tall status. In subtask 2, a prediction value of 1 indicates stunting or normal, whereas 
a value of 0 indicates tall status. The combined prediction (Y�) represents the integration of 
results from subtask 1 and subtask 2. If both subtasks produce a prediction of 0, the combined 
result is 2 (tall); if both subtasks produce a value of 1, the combined result is 0 (stunting); 
otherwise, the combined result is 1 (normal). 

 
4.3. Confusion Matrix 

Testing the XGBoost model with the Binary Decomposition approach on the test data 
produced the confusion matrix shown in Table 1. The target classes consist of three ordinal 
categories: 0 (stunting), 1 (normal), and 2 (tall). 

Table 4. Confusion Matrix of Prediction Results 

Prediction 
Actual 

Stunting Normal  Tall 

Stunting 1 0 0 
Normal 3 14 1 

Tall 0 0 0 

Based on Table 4, it can be seen that the XGBoost method with the Binary 
Decomposition approach was able to correctly predict 15 out of 20 toddlers’ nutritional status. 
On the other hand, the model was most accurate in predicting the majority class (normal), while 
a small portion of stunting cases were classified as normal, and most tall cases were 
misclassified as normal. 
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4.4. Model Evaluation 
The evaluation was carried out using four metrics relevant for ordinal classification on 

imbalanced data: Accuracy, Ordinal Mean Absolute Error (MAE), Quadratic Weighted Kappa 
(QWK), and Macro-F1 shown in Table 5. 

Table 5. Model Evaluation Result 

Metric Value 

Accuracy 0.75 
MAE (Ordinal) 0.25 

QWK 0.22 
Macro F1 0.39 

The results in Table 5 show that an Accuracy of 0.75 indicates the model was able to 
make correct predictions for 75% of the test data. 75%, which is a relatively high percentage 
for data with an imbalanced class distribution. However, as noted in [24] regarding the Ordinal 
Classification method, accuracy in ordinal data often does not fully reflect the quality of 
predictions, as this metric does not account for the distance between classes. Therefore, 
additional metrics such as ordinal MAE and QWK were used to provide a more comprehensive 
evaluation. 

An ordinal MAE of 0.25 signifies that, on average, the model’s prediction error was 
only 0.25 class levels from the actual value, demonstrating good preservation of class order. 
This finding is consistent with the results of [36], [37] on disease severity classification, which 
reported that ordinal regression–based approach with a specialized loss function could reduce 
MAE compared to conventional multi-class classification. In the context of this study, the low 
MAE suggests that the model effectively leveraged class order information through binary 
decomposition. 

A QWK of 0.22 represents a low level of agreement between the model’s predictions 
and the actual labels, with greater penalties for errors involving distant classes. This score falls 
within the moderate agreement category according to [38]. QWK is an important metric 
because it applies a quadratic penalty for errors that involve large class jumps. The study by 
[32] on Ordinal XGBoost also emphasizes that QWK is a sensitive indicator for assessing 
prediction quality in ordinal data, especially when class distribution is uneven. The QWK value 
in this study indicates that the model was relatively successful in maintaining class order, 
although it was not yet optimal for extreme classes. 

A Macro-F1 score of 0.39 indicates relatively balanced performance across classes, 
although performance in minority classes remains lower than that on the majority class. This 
phenomenon is also reported by [26], [28] which state that in ordinal data with class imbalance, 
models tend to be biased toward the most frequent class. In this study, such bias was evident 
in the confusion matrix, where the normal class was predicted well, while the stunting and tall 
classes were more often misclassified as normal. 

 
4.5. Discussion 

This study demonstrates that the XGBoost method with a Binary Decomposition 
approach is able to classify toddlers’ nutritional status with reasonable accuracy despite the 
challenges of ordinal and imbalanced data. The relatively high accuracy (0.75) and low MAE 
(0.25) indicate that the model successfully preserved the order of the classes. This aspect is 

https://jurnal.unimus.ac.id/index.php/statistik


 First Author ET AL 

57 | https://jurnal.unimus.ac.id/index.php/statistik 
   [DOI: 10.14710/JSUNIMUS.13.1.2025.45-60] 
 

particularly important in nutritional status classification, as misclassifications between adjacent 
categories (e.g., stunting → normal) are more acceptable than misclassifications across extreme 
categories (e.g., stunting → tall). 

Nevertheless, the low values of QWK (0.22) and Macro-F1 (0.39) confirm the presence 
of prediction bias toward the majority class (normal). This outcome reflects the limitation of 
the model when faced with highly skewed data distributions. Previous studies have highlighted 
that in ordinal classification with extreme imbalance, models often fail to establish clear 
decision boundaries for minority classes [13], [26]. In practice, this means that strong 
performance on the normal class is achieved at the cost of reduced accuracy in detecting 
stunting and tall cases, which are clinically more critical for early intervention. 

The analysis of predictor variables provides further insights into the determinants of 
nutritional status. In the first subtask (stunting vs normal or tall), health services (X2) emerged 
as the most influential variable. This finding is consistent with public health literature 
emphasizing the role of healthcare access and quality in preventing stunting through 
immunization, growth monitoring, and nutritional counseling [1], [2]. Limited access to 
healthcare directly increases children’s vulnerability to stunting. 

Conversely, in the second subtask (stunting or normal vs tall), environmental factors 
(X4) played the most important role. A supportive and clean environment is associated with 
reduced risk of infectious diseases and improved nutritional outcomes. In this context, 
environment encompasses not only sanitation but also access to clean water, housing 
conditions, and the surrounding socioeconomic support. Children’s diet (X3) also appeared as 
a key factor, underscoring the direct relationship between dietary intake and the likelihood of 
children achieving above-average height. 

Taken together, these findings suggest that stunting prevention strategies should not be 
limited to improving household economic status, but should also prioritize strengthening access 
to primary healthcare services and improving environmental conditions. The integration of 
these factors into public health interventions has the potential to enhance the effectiveness of 
stunting prevention programs. 

From a methodological perspective, this study highlights that although XGBoost with 
Binary Decomposition is effective in maintaining ordinal structure, additional approaches are 
needed to improve sensitivity to minority classes. Oversampling techniques, cost-sensitive loss 
functions, or hybrid methods (e.g., combining with deep learning–based ordinal classifiers) 
could potentially enhance detection performance for stunting and tall categories, which are 
relatively rare in the dataset. 

 

5. CONCLUSION 
This study addressed the challenge of classifying toddlers’ nutritional status in 

imbalanced ordinal data, where preserving class order and detecting minority categories are 
crucial for meaningful predictions. Using the XGBoost method with a Binary Decomposition 
approach, the model achieved promising results, with an accuracy of 0.75 and an ordinal MAE 
of 0.25, demonstrating strong order preservation, although QWK (0.22) and Macro-F1 (0.39) 
indicated limited performance on minority classes. Variable importance analysis revealed that 
access to health services was the key determinant in distinguishing stunted children, while 
environmental factors played the dominant role in identifying tall status, offering practical 
insights for targeted public health interventions. However, the study was limited by a relatively 
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small sample size and severe class imbalance, which constrained the model’s ability to 
establish optimal decision boundaries for minority categories. Future research should explore 
larger and more diverse datasets, as well as advanced techniques such as oversampling, cost-
sensitive loss functions, or hybrid approaches, to improve the detection of stunting and tall 
status while maintaining ordinal consistency. 
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