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Abstract  

Regression analysis can be done by parametric and nonparametric approach. The nonparametric approach does 

not assume an assumption compared to parametric. One nonparametric approach is the spline truncated. Spline is 

a polynomial piece that provides high flexibility. Spline modeling requires spline and knots. To determine the  

knots using General Cross Validation (GCV). In this study modeled the value of Jakarta Composite  Index (JCI). 

JCI provides benefits to know the overall stock price in the stock exchange Indonesia. In this study the best 

spline model is linear with three knots with R square is 94.34%. 

Keywords: Jakarta Composite’s Index, Spline truncated, GCV. 

Introduction 

Regression is one of the statistical methods to 

model the relationship between response variables 

and predictor variables. The parametric regression 

approach is easy, but very strict with assumptions. 

In contrast to parametric approach, nonparametric 

approach is complex to do, but do not require 

assumptions. Parametric modeling is done when the 

data pattern is known, while nonparametric 

approach can be done if the data pattern is 

unknown. Some nonparametric regression 

modeling methods have been widely used, among 

others, using spline truncated, local polynomial, 

Fourier series, Wavelet, Kernel and others. Spline 

regression truncated is a segmented regression 

model-segment in the form of piecewise 

polynomial. This segmented nature provides spline 

benefits compared to other methods. Spline 

truncated modeling procedures include determining 

the spline order and selecting the optimum knot 

point. Determination of optimum knot point using 

CV (Cross Validation) and GCV (General Cross 

Validation). 

Composite Stock Price Index (CSPI) is an indicator 

that presents the market price in Indonesia Stock 

Exchange. IHSG values tend to fluctuate and have 

high volatility over time. In this research will be 

modeled the value of IHSG using Spline truncated. 

Method 

2.1. Nonparametric regression 

Nonparametric regression is one of the approaches 

used to find out the relationship pattern between 

explanatory variable and unrecognized response of 

regression curve. In general, nonparametric 

regression has the following function form: 

 
 ( )  ,    i 1, 2, , ni i iy f t      

with iy  is response variable and ( )if t  is curve of 

regression with it  is prediktor variable  and i  is 

residual of model (Wahba, 1990).  

 

2.1. Spline Regression 

Spline is a segment of a segmented polynomial 

(piecewise polynomial) that has flexibility 

properties. The nature of flexibility is what 

distinguishes the spline with the polynomial. The 

joint fusion point of the pieces or points indicating 

changes in the behavior of the curve at different 

intervals. 

In general the spline function of the order is any 

function that can be written in form (Eubank, 

1988): 

  
1 1

( )   
m M mj

j k k
j k

f t t t K 


 

      (2.2) 

with         ;    

0               ;    

m
m k

k

t K t K
t K

t K


  
  



 

j and k  are parameter of spline regression then 

MKKK ,,, 21   are knot.  
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If 1m   and the number of knot is one then the 

form of spline model is spline linear as follow as  

  
1

1 2( )f t t t K 


     (2.3) 

It is called spline linear with one knot for  t = K 

It can be written as: 

 
 

1

1 2

                     ;   
( )

   ;   

t t K
f t

t t K t K



 


 

  
     (2.4) 

Spline regression model can be written as: 

  
1 1

m M
mj

i j i k i k i

j k

y t t K  


 

          (2.5) 

Then it can be written as : 

   1 1 1

m mm
i i m i i M i M iy t t t K t K    

 
        

If it is written as matrix can be follow:  
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Then it can be written as: 
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

  

 

2.3. Determine Optimal Knot using General Cross 

Validation (GCV) 

Selection of the optimal knot 1 2, , , MK K K is very 

important in nonparametric regression. The knot is 

a common fusion point where there are behavioral 

changes at different intervals (Budiantara, 2006). 

Therefore, to obtain the optimal spline should be 

selected the optimal knot point. If the optimal knot 

point is obtained, it will give the best spline. 

One of the optimal knot selection methods is 

Generalized Cross Validation or GCV (Budiantara, 

2000). The corresponding spline model 

corresponding to the optimal knot point is obtained 

from the smallest GCV value. 

The GCV function is defined as: 

 
1 2

1 2 2
1

1 2

( , , , )
( , , , )

[ ( , , , )]

M
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M
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and  1, , MK KA  is part of equation of 

 1ˆ , , My K K y A . 

 

3.Results and Discussions 

Statistics descriptive of the Jakarta Composite 

Index from July 12
th

 2016 to 2017 has mean is 

5756.6; variance is 164803.9; minimum is 5027.7 

and maximum is 6689.3. The scatter plot of the data 

as follow as in Figure 1. Based on Figure 1, it 

shows that the plot has trend increased model, but 

in period arround 384, has declined. 
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Figure 1. Scatter plot of the data 

First step for modelling spline regression is 

determine the knots. To determine the knots, we 

could used GCV. We find the minimum of GCV, it 

shows that optimum knot. We find for one up three 

orde of spline, then we get one to three knots.  

Table 1 shows that the GCV value of spline.  

Table 1. GCV value of spline model 

orde 

Number 

of  Knot Value of knot GCV 

1 

 

 

1 408 23591.6 

2 123; 400 1226.3  

3 56;114;400 11174.89  

2 

 

 

1  363  14819.7 

2  399;398 12197.6  

3  50; 105; 400  11260.02 

3 

 

 

1  329 16224.8  

2  116;306 16466.6  

3  50;99;380 16599.5  
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Based on Table 1, the best knot for spline model in 

modelling JCI is linear with three knot. In 2 orde  

for three knot as well as 1 orde three knot. For 3 

orde, it has simililar GCV for all of knots. So the 

best estimation spline regression model for JCI in 

one orde for three knots as follow as: 

 

 

5229.9 3.39 7.042 56 8.04( 114)

13.5 114

i i i i

i

y t t t

t

      



With R
2
=93.34% and MSE=10944.73, the graph of 

it is can be shown as in figure 2. 

If we would like to compare with anothe degree, 

such as 2 orde or 3 orde with the same knots as well 

as one orde can be done.  

Then we compare model with others model with 

same knots but different orde. 

 
Figure 2. Scatterplot of model spline linaer with 

three knots 

The model of JCI spline quadratic with three knots 

is follow as: 

 

 

25086.23 17.57 0.224 0.32 56

0.0998( 114) 0.167 114

i i i i

i i

y t t t

t t

     

  
 

R-square of this model is 90.64 with MSE model is 

15393.6. The scatter plot of this model follow as:  

 
Figure 3. Scatterplot of model spline quadratic with 

three knots 

Then the model spline for cubic with three knots as 

follow as: 

   

2 3

5

5043.82 25.863 0.572 0.0037

0.0038 56 5.8 10 ( 114) 0.00087 114

i i i i

i i i

y t t t

t t t

    

     

  
Figure 4. Scatterplot of model spline quadratic with 

three knots 

 
R-square of spline model cubic with three knots is 

89.58 with MSE model 17133. 

Based on spline model, the best model for 

modelling JCI is spline linearwith three knots. 

Somde of model such as quadratic and cubic with 

three knots, for same knots with linear, it shows 

that the models have similiarity results as R square. 
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