FOURIER SERIES NONPARAMETRIC REGRESSION FOR THE MODELIZING OF THE TIDAL

Collaborative Graduate Schools Conference

ISFT

The 3^{ra} International Seminar On TION and TECHNOLOG

Tiani Wahyu Utami¹, Indah Manfaati Nur², Ismawati³ ^{1,2,3}Muhammadiyah University of Semarang, Semarang, Indonesia *Corresponding author email: tianiutami@unimus.ac.id

Abstract

The method of statistic used to estimate the estimation of sea water level is by nonparametric regression approaching of Fourier series. The rob flood caused by sea level rise in Semarang becomes a dissolved problem until today This results the need of modeling to predict and know how high sea level is. The fourier series have fluctuative data pattern because of its periodic character. This makes Fourier series as the appropriate approaching to modelize the sea tidal. Before modelizing the sea tidal with Fourier series approaching, It is previously necessary to find the optimal K value . Based on the determination of optimal K value, with GCV method, It is obtanied K equals 277. The result of average data of the Semarang sea tidal with reggression nonparametic method showed that R^2 is 95% and MSE = 4,42. The lowest tidal estimation resulted in Semarang is on March 2, 2016. Then the highest tidal estimation in Semarang City occurred on August 31, 2016.

Keywords: Nonparametric Regression, Fourier Series, Tidal Sea

FDUC

1. Introduction

The method of statistic plays an important role in estimating of sea level. One of methods used in this writing is by regression nonparametic approaching. The regression nonparametic approaching is method of estimating model based on approaching which is not tied to the assumption in the form of certain regression curva. One of regression nonparametic approaching is using Fourier Series. The strength of Fourier Series of regression nonparametic approaching is that it enables to solve the triginometrical distribution data and fluctuative data pattern, is dependent fluctuating variable value to various independent value (Prahutama, 2013).

Researchs about regression nonparametic approaching of Fourier Series were done previously by Semiati (2010) Developing the estimation model of regression nonparamatic approaching of biresponse Fourier Series, while semiparametic regression using fourier series developed by Asrini (2012), research done by Prahutama (2013) reviewing regression nonparametic model with fourier series in case of opened unemployment level in east java, and research about the modeling of sea tidal in Semarang with local polynominal regression nonparametric approaching by Utami and Nur (2015).

Tidal is sea level fluctuation as time function for the existance of celestial object tensile strenght, especially sun and moon. Sea level rise that maintains increasing, is worried to threaten coastal areas so that causing the financial and economic disadvantage. This will be certainly impacting on sea level. The occurance of subsidence in Semarang also worsens the sea level rise. The subsidence happens because of consolidation and excessively artetic taking (Sarbidi, 2002). This will cause flood in Semarang when the tide is high.

Rob flood occured in Semarang becomes a dissolved problem until today. This is caused the certain number of sea level rise in Semarang is not obvious. Vulnerability research in coastal areas is demanded in order to reduce the impacts and possible responses related to the change of ongoing phenomena. This results in the need for modeling to predict and know how high the sea level is. The result of the modeling is expected to help the concerning parties the strategical steps is needed to be done so that not suffering significant losses. Tidal data shows the pattern of distribution periodic data or fluctuating. Therefore, the appropriate statistical method for tidal modeling tide in Semarang is using the nonparametric regression approach of Fourier series.

1.1 Fourier Series Nonparametic Regression

The method of Fourier series nonparametic regression is the regression method used when the curva is between dependent and independent variable, and Independent variable is not known for the form and pattern. The common nonparametric regression model is as follows

$$y_i = f(x_i) + \varepsilon_i \tag{1.1}$$

with,

 y_i = dependent variable x_i = independent variable $f(x_i)$ = regression function

Fourier Series is a trygonometric polynominal function that has flexibility level. This fourier series estimator is generally used when the used data and explored data are not known and there is a seasonal pattern tendency (Tripena and Budiantara, 2006). Fourier Series function in this research is as follows

$$f(t) = \frac{1}{2}a_0 + \gamma t + \sum_{k=1}^{K} a_k \cos\left(\frac{2\pi kt}{2L}\right)$$
(1.2)

with

 $a_0, a_k \, dan \, b_k$ is fourier coeficient (Asrini, 2012).

The level of estimator graduation of fourier series is determined by graduation parameter election. The lower a estimator graduation of fourier series is, the more graduational the graduation parameter K and the higher graduation parameter is, the more less-graduational the estimation is from f. Therefore, it is needed to elect The optimal K.

1.2 The Tidal Sea

Tidal is sea level fluctuation as time function for the existance of celestial object tensile strenght, especially sun and moon to sea volume on the earth this tensile strenght is depending from the distance of earth with celestrial objects and their volume. Tidal is the important factor of coastal geomorphology, In this case, It is the neat changing of sea level along the coast and currents formed by tide. In addition, tidal knowledge is important in the planning of coastal buildings, ports and vegetation.

Coastal area is a very dynamic and rich in biological and non-biological natural resources. But coastal areas are more vulnerable to the phenomenon of global warming that causes sea level rise. Coastal areas are areas that will be adversely affected by the global sea level rise phenomenon. Theoretically, sea level rise will inundate some coastal areas, So that causing sea water to continue to land in the direction of land. Coastal areas are a region that is weak or vulnerable by environmental factors such as climate variability, climate change and rising sea levels. Annual sea water rise in Semarang reaches 9,27 mm. The problem of sea level rise is a problem that is noticed after the occurrence of global warming (global warming). Rising global surface temperatures caused the melting of the north and south poles of ice so there was a rise in sea level (Sea Level Rise). It is estimated that from 1999-2100 upcoming sea level rise around 1,4-5,8 m (Dahuri, 2002).

2. Methods

2.1 Data Resources

The main data resources used in this research is the secondary data served by BMKG. The taken data is the daily data in a year (January 1, 2016 until December 31, 2016).

2.2 Research Variable

 Table 2.1 Dependent Variable and Independent Variable

Variable	Variable Information	Unit of Measure	Definiton of Counting
Dependent	Tidal	Cm	Counted from everyday rainfall in a year starting from January 1, 2016 until December 31, 2016 in Semarang
Independent	Time	Day	Counted from How many days are from January-December 2016, is 366 days

The 3rd International Seminar On EDUCATION and TECHNOLOGY - ISET Collaborative Graduate Schools Conference

2.3 Procedures (or research design)

Analysis steps in this research can be described in diagram as described in Flowchart 2.1 below:

Flowchart 2.1 Analysis steps in this research

3. Results

3.1 Determine Optimal K

The first step is to determine the optimal K value The optimal K value is a positive integer. The determination of the optimal K value is using GCV method then running the program of the determination of optimal K value on Tidal in Semarang based on GCV method. The obtained result from the tested K is as follows:

K	GCV	K	GCV	K	GCV
7	1,25 × 10 ⁺⁰⁵	137	1,32 × 10 ⁺⁰²	267	1,07 × 10 ⁺⁰¹
17	$2,45 \times 10^{+04}$	147	$1,12 \times 10^{+02}$	277	7,67×10 ⁺⁰⁰
27	9,99 × 10 ⁺⁰³	157	9,44 × 10 ⁺¹	287	6,92× 10 ⁺⁰⁰
37	5,31 × 10 ⁺⁰³	167	7,90 × 10 ⁺⁰¹	297	5,68× 10 ⁺⁰⁰
47	$2,06 \times 10^{+03}$	177	6,84 × 10 ⁺⁰¹	307	4,40× 10 ⁺⁰⁰
57	$1,36 \times 10^{+03}$	187	5,95 × 10 ⁺⁰¹	317	3,04× 10 ⁺⁰⁰
67	9,79 × 10 ⁺⁰²	197	4,49 × 10 ⁺⁰¹	327	2,54× 10 ⁺⁰⁰
77	7,23 × 10 ⁺⁰²	207	3,66 × 10 ⁺⁰¹	337	1,57×10+00
87	5,59 × 10 ⁺⁰²	217	3,27 × 10 ⁺⁰¹	347	8,66 × 10 ⁻⁰¹
97	$3,22 \times 10^{+02}$	227	$2,76 \times 10^{+01}$	357	3,99 × 10 ⁻⁰¹
107	2,51 × 10 ⁺⁰²	237	2,44 × 10 ⁺⁰¹	367	3,95 × 10 ⁻¹⁹
117	2,05× 10 ⁺⁰²	247	1,59 × 10 ⁺⁰¹		-
127	$1,67 \times 10^{+02}$	257	1,22 × 10 ⁺⁰¹		

Table 3.1 The Value Using GCV Method to Every Optimal K

Table 3.1 shows that the Optimal K on the average data of Tidal in Semarang is on K=367 because of the lowest GCV value. By getting K = 367 as the optimal K, so it is known how many parameter must be estimated by 369 parameter. This is obtained based on equation1.2 that is by knowing the amount of the estimated parameter. Therefore, it is known the resulted model to be fulfilled and seen from R^2 for K=1 to K=367.

International Seminar On EDUCATION and TECHNOLOGY - ISET Collaborative Graduate Schools Conference

Table 3.2 \mathbb{R}^2 and MSE to Every Optimal K						
K	R ²	MSE				
277	0.95 (95%)	4.42				
287	0,95 (95%)	4.28				
297	0,96 (96%)	3.77				
307	0,97 (97%)	3.11				
317	0,97 (97%)	2.30				
327	0,98 (98 %)	2.04				
337	0,98 (98%)	1.34				
347	0,99 (99%)	0.78				
357	0,99 (99%)	0,38				
367	1 (100%)	5.24×10^{-07}				

Based on **Table 3.2**, it shows that for value K = 277 has resulted $R^2 = 95$ % which is enough high. The choosen method is a high R^2 , low MSE and parsimony model, so the choosen model is **K=277**.

3.2 The Modelizing of Average Tidal Data in Semarang with Fourier Series

After knowing that the optimal K is 277, the next step is to determine the estimation model of tidal with regression nonparametric approaching of Fourier Series. The result of estimated model can be seen on attachment 1. Attachment 1 shows that the obtained model for average tidal data in Semarang as follows : $\hat{y} = 62,942 + 0,066t + 0,331\cos t +$

 $\begin{array}{l} 0,328\cos 2t - 0,488\cos 3t - \\ 0,395\cos 4t - 0,073\cos 5t + \dots - \\ 0,070\cos 277t \end{array}$

4. Discussion

Based on the obtained modelizing, it is known that if (t) = 62, so it can be estimated that average tidal data in Semarang is in the amount of 52,42 cm. The estimation result of the lowest tide in Semarang is the amount of 52,42 cm on March 2, 2016. The estimation result of highest tide in Semarang is the amount of 108,96 cm, on August 31, 2016. The result of the model can be used to forecast the average tidal that will be going to happen in the future by entering how many (t) that can be predicted in the equation .

5. Conclusions

The result of the determination of optimal K with GVC method is K = 277. The result of modelizing that is obtained for the tidal average data in Semarang with R² is in the amount of 95% and MSE = 4,42 as follows: $\hat{y} = 62,942 + 0,066t + 0,331 \cos t +$

 $0,328\cos 2t - 0,488\cos 3t -$

 $0,395\cos 4t - 0,073\cos 5t + \dots -$

0,070 cos 277*t*

The estimation result of the lowest tide in Semarang is on March 2, 2016. The estimation result of highest tide in Semarang on August 31, 2016.

6. References

- [1] Asrini, Luh Juni. 2012, Regresi Semiparametrik Deret Fourier, *Prosiding Seminar Nasional FMIPA* Universitas Negeri Surabaya, hal.77-80, 24 November 2012.
- [2] Dahuri, R. 2002. Pengaruh Global Warming terhadap Pesisir dan Pulau-Pulau Kecil. Semnas Pengaruh Global Warming terhadap Pesisir dan Pulau Kecil Ditinjau dari Kenaikan Muka Air Laut. Jakarta.
- [3] Semiati, Rini. 2010. Regresi Nonparametrik Deret Fourier Birespon, Tesis, ITS, Surabaya.
- [4] Prahutama, A. 2013. Model Regresi Nonparametrik dengan Pendekatan Deret Fourier pada Kasus Tingkat Pengangguran Terbuka di Jawa Timur, *Prosiding Seminar Nasional Statistika UNDIP*, Semarang
- [5] Sarbidi, 2002. Pengaruh Rob pada Pemukiman Pantai (kasus Semarang). Prosiding Kerugian pada Bangunan dan Kawasan Akibat Kenaikan Muka Air Laut pada Kota-kota Pantai di Indonesia, Jakarta
- [6] Tripena, A., dan Budiantara, I.N. 2006. Fourier Estimator in Nonparametric Regression. *International Conference On Natural and Applied Natural Scienes. Ahmad Dahlan University.* Yogyakarta
- [7] Utami, T. W., & Nur, I. M. 2015. Pemodelan Pasang Surut Air Laut di Kota Semarang dengan Pendekatan Regresi Nonparametrik Polinomial Lokal Kernel. *Prosiding Seminar Nasional Matematika dan Pendidikan Matematika UNDIP*, Semarang

The 3rd International Seminar On EDUCATION and TECHNOLOGY - ISET Collaborative Graduate Schools Conference

UNNE

Attachment 1. Estimated Parameter Model Regression Nonparametric Approaching of Fourier Series

ŕd

Parameter	Value	Parameter	Value	Parameter	Value	Parameter	Value
α	62.942	7	0.066	<i>C</i> C ₁	0.331	α_{2}	0.328
α_{2}	-0.455	a.	-0.395	α_{*}	-0.073	a.	-0.241
α_{7}	0.364	α_{*}	0.149	a,	0.052	CC 10	0.270
α_{11}	0.451	<i>C</i> C ₁₂	0.038	CC 13	-0.455	CC 14	-0.458
CC 15	0.114	CC 16	0.124	CC 17	0.169	α_{11}	0.560
CC 19	0.771	CC 20	0.389	<i>C</i> C 21	0.343	<i>c</i> c	-0.044
α_{22}	-0.226	CC 24	0.131	<i>α</i>	0.335	CC 26	-0.213
α_{27}	-0.395	α_{11}	-0.657	α_{2}	0.231	CC 20	0.654
CC 21	-0.055	<i>CC</i> 22	-0.944	CC 22	-0.347	CC 24	-0.301
CC 25	-0.248	CC 26	0.500	a 27	0.336	<i>c</i> c	0.201
CC 20	0.394	α_{∞}	0.075	α_{n}	0.210	α_{a}	0.096
α_{a}	0.749	a	-6.624	α_{s}	-0.502	<i>cc</i>	0.087
α_{cr}	-0.159	α_{a}	0.302	a	0.141	CC 20	0.560
04 51	-0.320	α_{m}	-0.077	α_{n}	-0.222	a	0.234
<i>a</i>	-0.207	a	-0.314	α_{r}	1.269	a	0.055
CC 22	-0.013	α_{ω}	0.265	$\alpha_{\rm el}$	0.503	CL 62	0.476
CC 62	-0.045	a	-0.311	a	0.071	CC	-0.079
CL er	-0.183	a cura	-0.377	a cu	-0.251	06 70	-0.258
CC 71	0.405	CC 72	-0.254	a.,	-0.302	OC 74	-0.139
CC 75	-1.027	CC 76	-0.239	<i>α</i> .,,	0.400	CC 78	0.491
α_{2}	0.050	α_{10}	0.466	α_n	-0.104	α_{12}	-0.580
CC ==	-0.114	CC ==	0.333	CC ==	0.005	CC 26	0.286
06 57	0.010	<i>c</i> c	4.029	CC 39	-0.003	CC 20	0.301
CC 21	0.441	CC 92	0.005	CC 22	0.145	CC 24	-1.010
CC 25	-0.351	CL 26	0.856	a m	0.209	CC 22	-0.064
CL 32	-0.137	CC 100	0.624	CC 101	1.007	OC 102	0.435
CC 102	0.169	CC 104	-0.119	CL 105	-0.323	CC 106	0.053
CC 107	-0.957	CC 105	0.332	CC 109	0.553	CC 110	0.277
α_{111}	-0.055	CC112	0.013	<i>cc</i> ₁₁₂	-0.755	CC 114	-0.223
CC 115	0.060	CL 116	-0.042	CC 117	-0.100	CC 118	0.022
CC 119	0.921	CC 120	0.450	CC 121	0.460	CC 122	-0.242
04111	-0.129	CC124	-0.492	action	0.069	am	-0.065

Parameter	Value	Parameter	Value	Parameter	Value	Parameter	Value	
CL 127	0.319	CL 125	0.341	CL 129	0.005	CC 130	0.242	
α_{121}	0.563	CC 122	-1.564	CC 122	-0.313	CC 124	-0.282	
CC 135	-0.491	CC 136	-0.179	CC 127	-0.051	CC 138	-0.352	
CC 139	0.491	CC 140	0.085	α_{141}	-0.102	CC 142	-0.353	
CL 142	-0.115	CL 166	0.410	CL 145	-0.075	CC 146	0.236	
CC 147	-0.255	CL 145	-0.148	CL 149	-0.244	CC 150	0.794	
CC 151	-0.145	CC 152	-0.313	CC 152	-0.350	CC 154	0.027	
CC 155	-0.282	CC 156	0.391	CC 157	0.537	a	-0.004	
CC 159	-0.342	CC 160	0.531	CL 161	-0.299	CC 162	0.760	
CC 162	0.828	CL 164	0.041	CL 165	-0.134	CC 166	-0.298	
CC 167	-0.318	CC 165	-0.139	CC 169	0.359	CC 170	0.115	
CC 171	0.277	CC 172	0.266	CL 172	0.056	CC 174	-0.196	
CC 175	0.465	OL 176	0.642	CL 177	-0.170	CL 175	-0.051	
CC 179	0.275	CL 150	0.211	CL 181	0.415	CC 182	-0.378	
CC 182	0.025	CL 154	-0.399	CL 185	-0.288	CC 186	-0.146	
CC 187	0.470	CC 155	0.266	CC 159	0.698	CC 190	0.260	
CC 191	0.211	CC 192	0.455	CC 195	0.353	CC 194	0.055	
CL 195	-1.959	CC 196	-0.717	CL 197	0.028	CL 198	0.349	
CC 199	0.509	CC 200	-0.344	CC 201	-1.333	<i>C</i> C 202	-0.152	
CC 205	-0.688	CC 206	0.101	CC 208	-0.060	CC 205	0.173	
CC 207	0.134	CC 205	-0.234	CL 200	0.004	CC 210	0.556	
CC 211	0.221	oc an	0.126	CL 210	-0.156	CC 214	-0.116	
CC 215	0.060	CC 216	0.118	CC 217	-0.008	<i>C</i> C 218	0.000	
CC 219	-0.589	CC 220	-1.047	α_{z_1}	0.093	<i>α</i>	0.242	
<i>c</i> c	0.278	CC 228	0.023	CL 228	-0.235	CC 226	-0.050	
CC 227	-0.116	CL 22	-0.047	CL 220	0.294	CC 230	0.335	
CC =1	-0.019	<i>CL</i> 220	-0.110	CL 220	-0.390	CC 234	-0.036	
CC 228	0.513	CC 226	-0.363	$\alpha_{2\pi}$	0.105	<i>α</i>	-0.334	
CC 239	0.588	CL 200	0.650	CC 201	0.321	α_{2a}	0.022	
CL 20	-0.120	CL 202	-0.319	CL 205	2.238	CC 246	-0.389	
α_{ze}	-0.075	CC 26	0.038	CL 20	-0.208	CC 250	-0.193	
CC 21	0.993	α_{22}	0.489	α_{22}	0.510	CC 258	0.164	
a	-0.278	CC 255	-0.541	α_{zz}	-0.723	α_{25}	-0.108	

Parameter	Value	Parameter	Value	Parameter	Value	Parameter	Value
a :=	0.162	α_{20}	0.405	CL 201	0.150	α_{22}	0.144
α_{22}	0.059	α_{28}	0.269	CL 242	0.180	α_{22}	-0.577
$\alpha_{2\sigma}$	-0.074	α_{22}	-0.302	a	-0.144	α_{22}	1.155
α_{z_1}	0.450	α_{m}	0.053	α_{22}	-0.363	α_{23}	-0.720
α_{23}	-0.313	α_{22}	0.486	α_{277}	-0.070		