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Abstract 

In the present work the characterisazion of reference electrode Ag/AgCl type dry by 0.01 M [Fe(CN)6]
3-/4-

 in 0.1 

M KCl using the technique of cyclic voltammetry  at potential range of -0.2 to 0.8 V and scan rate variation.. 

The anodic (Epa) and the cathodic (Epc) peak potentials. as well as the corresponding anodic (ipa) and cathodic 

(ipc) peak currents. were obtained at different scan rates (10. 20. 25. 50. 100. and 200)  mV/s . The half-wave 

potentials (E1/2) of the [Fe(CN)6]
4-

/ [Fe(CN)6]
3-

 couple in the investigated solvent media have been evaluated. Ip 

versus v
1/2

 have been calculated using the Randles-Sevcik equation.. 
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1. Introduction 

One of technique in modern analytical chemistry that can be used to indicate electroactive spesies and to 

give information about the analyte is obtained from measurement of the Faradaic current as a function of the 

applied potential is cyclic voltammetry. At this limiting potential the direction of the potential scan is reversed 

and the same potential range is scanned in the opposite direction (hence the term “cyclic”). Consequently. the 

species formed by oxidation on the forward scan can be reduced on the reverse scan. This technique is 

accomplished with a three-electrode arrangement: the potential is applied to the working electrode with respect 

to a reference electrode while an auxiliary (or counter) electrode is used to complete the electrical circuit 1,2. 

Cyclic voltammetry is a method in which information about the analyte is obtained from measurement of the 

Faradaic current as a function of theapplied potential.  

The current response over a range of potentials is measured. starting at an initial value and varying the 

potential in a linear manner up to a limiting value. At this limiting potential the direction of the potential scan is 

reversed and the same potential range is scanned in the opposite direction (hence the term “cyclic”). 

Consequently. the species formed by oxidation on the forward scan can be reduced on the reverse scan. This 

technique is accomplished with a three-electrode arrangement: the potential is applied to the working electrode 

with respect to a reference electrode while an auxiliary (or counter) electrode is used to complete the electrical 

circuit. 

The present article reports the results from an electrochemical investigation of the [Fe(CN)6]4-/ 

[Fe(CN)6]3-  couple in KCl 0.1 M using the technique of cyclic voltammetry. All experiments were 

undertaken at different scan rates (10. 20. 25. 50. 100. and 200)  mV/s and cyclic variation. The purpose of the 

present work is characterisazion  of reference electrode Ag/AgCl dry type by cyclic voltammetry to enlarge the 

available knowledge on the electrochemical behavior.  

2. Methods 

2.1. Chemicals 

All the chemicals and solvents used in the present study were of Sigma-Adrich. was purchased from 

Sigma-Aldrich. The solvents used on this study were KCl. The chemical used on this study was dilute 0.01 to 

0.005 M K3Fe(CN)6/K4Fe(CN)6  in KCl 0.1 M solvent as a working solution.  

2.2. Experimental 

All electrochemical experiments were undertaken with a potensiostat from eDAQ with disc Platinum 

(Pt) working electrode (1 mm).  Pt wire (0.5 mm) as counter electrode. and dry type Ag/AgCl as reference 

electode.  Therefore. all values of potential are automatically reported with respect to the redox potential of 

Ag/AgCl. For the electrochemical experiments. the electrolyte temperature was the room temperature of about 

25
o
C. 
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3. Results and Discussion 

Characterisazion of the reference electrode Ag/AgCl self-made by cyclic voltammetry  

Initial characterization performed using cyclic voltammetry versus Ag/AgCl reference electrode using 

0.1 KCl in aqueous as the electrolyte on the potential range of -0.8 to 0.5 V and at scan rate of 100 mV / as 

shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.Voltamogram of disc Pt using 0.1M KCl as the electrolyte on potensial range -0.8V to 0.5V 

 

It is seen that there is no oxidation and reduction peak in the applied potential range. Its indicate that 

disc Pt is electrochemically stable and there is no contamination of other analytes that can undergo redox 

reactions in the applied potential range on the cyclic voltammetry system. 

 Characterization of reference electrode Ag/AgCl also analyzed using a solution of  0.005 M 

[Fe(CN)6]
3-/4-

 in 0.1 M KCl. The characterization in using the same solution by varying the scan rate (figure 2a 

and 2b) is also shown that the current is proportionate to the increased of scan rate which indicates the good 

performance of the working electrode for delivering the current. The cyclic voltammetric parameters for 

K3Fe(CN)6/K4Fe(CN)6  0.005 M in KCl 0.1 M in water at 298 K are summarized in Table 1 and 2. all potential 

values are reported versus the Ag/AgCl reference electrode was made by my self and commercial eDAQ dry 

type 

 
Fig. 2 Cyclic voltammograms vs Ag/AgCl reference electrode at a platinum electrode showing the effect of the 

scan rate on the electrochemistry of K3Fe(CN) 6 /K4Fe(CN)6 system 0.005 M in KCl 0.1 M at 298 K; (2a) vs 

Ag/AgCl was made by myself. and (2b). vs Ag/AgCl was commercial eDAQ dry type 
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The reference electrode must have a fixed electrode potential during the measurement. To comply with 

these requirements the self-made Ag/AgCl electrode has done characterisazion using K3Fe(CN)6/K4Fe(CN)6  

cyclic  voltammetry.  

 

Table 1. Scan rate (ν). anodic (Epa) and cathodic (Epc) peak potentials a anodic and cathodic current ratio 

(ipa/ipc). anodic and cathodic peak separation (_Ep) and half-wave potential a (E1/2) for K3Fe(CN)6/K4Fe(CN)6 

system at concentration of 0.005 M in  0.1 M KCl at 298 K versus Ag/AgCl which was made by myself 

v Ag/AgCl of the self - made 

(mV/s) ∆ipa (µA) ∆ipc (µA) ipa/ipc Epa (mV) Epc (mV) Epa - Epc(mV) (Epa + Epc)/2 (mV) 

10 4.43 -3.55 -1.25 284 112 172 198 

20 5.79 -4.80 -1.21 286 113 173 200 

50 7.71 -7.46 -1.03 292 116 176 204 

80 9.68 -9.89 -0.98 294 116 178 205 

100 11.90 -11.74 -1.01 302 120 182 211 

200 17.41 -16.47 -1.06 302 128 174 215 

 
Table 2. Scan rate (ν). anodic (Epa) and cathodic (Epc) peak potentials a anodic and cathodic current ratio 

(ipa/ipc). anodic and cathodic peak separation (_Ep) and half-wave potential a (E1/2) for K3Fe(CN)6/K4Fe(CN)6 

system at concentration of 0.005 M in  0.1 M KCl at 298 K versus Ag/AgCl commercial eDAQ dry type. 

v 

(mV/s) 

Ag/AgCl EDAQ 

∆ipa (µA) ∆ipc (µA) ipa/ipc Epa (mV) Epc (mV) Epa - Epc(mV) (Epa + Epc)/2 (mV) 

10 3.69 -3.21 -1.15 266 110 156 188 

20 5.22 -4.34 -1.20 268 114 140 191 

50 7.45 -6.77 -1.10 274 116 152 195 

80 9.41 -8.79 -1.07 272 122 156 197 

100 11.02 -10.44 -1.06 276 128 162 202 

200 16.65 -13.98 -1.19 276 130 166 203 

 
Representative cyclic voltammograms of K3Fe(CN)6/K4Fe(CN)6 system in KCl 0.1 M in water are 

shown in Figs. 2. The voltammograms illustrate that as the voltage becomes more positive. an anodic peak 

current (ipa) is observed at the anodic peak potential (Epa). indicating that Fe(CN)6
4-

 is converted to its oxidized 

form Fe(CN)6
3-

 2 according to reaction 1. During the return scan. the voltage becomes less positive and the 

process is reversed; consequently. reduction of Fe(CN)6
4-

  is now occurring and a cathodic peak current (ipc) is 

observed at the cathodic peak potential (Epc). 

 

Fe(CN)6
4-

(aq)                       Fe(CN)6
3-

(aq) + e       (1) 

Fe(CN)6
3-

(aq)   + e
-
                 Fe(CN)6

4-
(aq)     (2)      

 

The [Fe(CN)6]
4-

/ [Fe(CN)6]
3-

 couple exhibits reversible oxidation of the investigated in KCl 0.1 M in 

water media. The anodic and cathodic peak separation (Ep) in the cyclic voltammograms was found to be in the 

range between -0.20 V (the ideal value that is indicative of one-electron oxidation) and 0.80 V (Table 1). The 

peak current ratio of the reverse and the forward scans is equal to unity (ipa/ipc = 1.0). It was also found that the 

peak currents were essentially constant for several cycles (Fig.3). 

The redox potential for a couple is better expressed as the half-wave potential (E1/2) rather than by the 

anodic peak (Epa) or cathodic peak (Epc) potentials. because both Epa and Epc change with the scan rate 

whereas E1/2 is independent of the scan rate. The halfwave potential (E1/2) of the [Fe(CN)6]
4-

/ [Fe(CN)6]
3-

 

couple was determined according to the following equation: 

 

E1/2 = Epa −   (∆Ep)/2 

                                                  

where Epa is the anodic peak potential and_Ep is the potential difference between the anodic and 

cathodic peaks (_Ep = Epa – Epc). Cyclic voltammograms of [Fe(CN)6]
4-

/ [Fe(CN)6]
3-

 couple in KCl 0.1 M in 

water solution are shown in Figs. 2 (a) and (b) with variation scan rate. The data obtained from these curves are 
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summarized in Table 1 and 2. The values of the half-wave potential (E1/2) were found to be independent of the 

scan rate. as was expected for a reversible system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Curves Ipa and Ipc versus repeating cyclic  of  cyclic voltammogram K3Fe(CN) 6 /K4Fe(CN)6 system 

0.005 M in KCl 0.1 M vs Ag/AgCl was made by myself and commercial eDAQ dry type at 100 mV/s; (3a) 5 

cyclic (3b). 10 cyclic 

 

Figure 3 (a) and (b) shows that the results are reproducible to the application of repeating cyclic which 

indicate the stability of the working electrode. and electrolyte solution and analytes during measurement. From 

this characterization. we identified the oxidation and reduction peak as the analyte is in the range -0.20  to 0.80 

V. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Curves Ipa and Ipc versus v1/2 of  cyclic voltammogram K3Fe(CN) 6 /K4Fe(CN)6 system 0.005 M in KCl 

0.1 M; (3a) vs Ag/AgCl was made by myself (3b). commercial eDAQ dry type 

 

Characterization using the same solution by varying the scan rate (figure 4a and 4b) is also shown that 

the current is proportionate to the increased of scan rate which indicates the good performance of the working 

electrode for delivering the current
6
. The peak current for a reversible process is described by the 

Randles-Sevcik equation 
7, 8

, which assumes that mass transport occurs only by a diffusion process 

 

                             

 

where ip is the peak current (in A), n the number of electron equivalents exchanged during the 

oxidation/redox reversible process (electron stoichiometry), A the active surface area of the working electrode 
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(cm
2
), D the diffusion coefficient (cm2・s

–1
), c the bulk concentration of the diffusing species (mol・cm

–3
), ν 

the voltage scan rate (V・s
–1

), F Faraday’s constant, and R the universal gas constant. 

In the present work, a plot of the anodic (ipa) and the cathodic peak current (ipc) against the square root of the 

scan rate (ν
1/2

) results in a straight line that passes through the origin with a slope proportional to the square root 

of the diffusion coefficient (D
1/2

). 

 Based on result of electrochemical parameter Ipa/Ipc is closer to 1 (involving 1 electron in the 

K3Fe(CN) 6 /K4Fe(CN)6 system), so that both comparing electrodes can be used. However, according to visual 

observation, reference electrode Ag/AgCl was made by myself is decreasing by time. This happens due to its 

partition porosity, giving a possibility for the electrode’s KCl solution to contaminate the analyte. Meanwhile, 

reference electrode Ag/AgCl commercial dry type has Cl
-
 source on its surface that comes from the Ksp

1/2
 

AgCl’s solubility in the solution used.  

4. Conclusions 

Based on the characteristic result electrochemical parameter Ipa/Ipc is closer to 1 (involving 1 electron 

in that system) of the both reference electrode Ag/AgCl (was made by myself and commercial eDAQ  dry 

type) to 0.01 and 0.005 M  (Fe(CN)6]
3-/4-

 ) system in KCl 0.1 M in water using work and auxalary electrode Pt, 

so that both reference electrode Ag/AgCl   can be used. But there are some weakness of electrode Ag/AgCl 

was made by myself, such as leaky cell membrane (effect of porosity to Cl- concentrations in analyte solution) 

and to require replenishment of 0.1 M KCl solution. Whereas reference electrode Ag/AgCl commercial eDAQ 

dry type has a source of Cl
-
 ions on the electrode surface from the solubility (Ksp

1 / 2
) AgCl in various the 

solution used. For the subsequent work, reference electrode Ag/AgCl commercial dry type was used in different 

types of solvents. 
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