Study of mechanical properties of prototype optical phase conductor for tropical climate conditions in Indonesia Syamsudin Rahardjo^{1,a)}, Solechan²⁾, Rubijanto JP³⁾ 1,2,3 Laboratory of Production Process, Mechanical Engineering Faculty, Universitas Muhammadiyah Semarang ^{a)}Corresponding author: samraharjo2@gmail.com **Abstract.** To access the electrical and telecommunications networks required huge costs because there is no infrastructure. To overcome this problem the government is targeting the national electrical capacity 57 thousand Megawatts in 2016 by appointing the State Electricity Company. Target national of Java-Bali distribution network throughout 27.779 km. PLN uses electricity transmission line from the plant to the substation through the tower-tower SUTT and SUTET. This study makes OPPC cable used for extra high voltage power conductors and internet network data that has reliable performance and durable. These goals will be achieved when the known characteristics and mechanical properties OPPC cable. Making cables OPPC by varying the amount of reinforcing steel galvanized wire and twisting torsional stress magnitude for analyzing mechanical properties ranging impact strength and tensile. The mechanical properties of artificial OPPC cable when compared with mechanical properties that are owned by the ACSR cable and commercial OPPC should be equal or close to its value before the applied field. The results of material testing OPPC cable diameter of 3 cm for Type-voltage torsional twisting 36/6/24 RBS 50% have the impact strength and tensile highest of 112.27 kN and 61.26 MPa. While the impact strength and tensile cables that OPPC least 3 cm in diameter with a voltage selection of the type of 36/6/24 RBS 25% of 63.24 kN and 36.36 MPa. The tensile strength and impact influenced the amount of galvanized steel wire and twisting torsional stress. The more galvanized steel wire and high torsional twisting voltage, proportional to the impact strength and tensile increased. ## INTRODUCTION Marginal areas especially rural communities still lack electrical lighting and telecommunications facilities. To access the electrical and telecommunications networks required huge costs because there is no infrastructure⁽¹⁸⁾. Overcome the government is targeting the national electrical capacity 57 thousand Megawatts in 2016 by appointing State Electricity Company⁽¹⁶⁾. National targets of distribution electricity Java-Bali distribution network along the 27,779 km⁽⁷⁾. PLN uses electricity transmission line from the plant to the substation through the tower-tower Air Channel High Voltage (SUTT) and the Air Line Extra High Voltage (SUTET). Conductor used type ACSR (aluminum Conductor Steel Reinforced) which berlilit wire with fiber core steel as reinforcement in the middle of a layer of aluminum fibers⁽¹⁷⁾. Weakness ACSR not stand the heat and high electrical conductivity⁽⁴⁾. While the ACCR (Aluminum Conductor Composite Reinforced), which consists of a core of aluminum alloy matrix fibers surrounded by fiber aluminum zirconium content. Conductivity properties, tensile strength and high heat resistance but did not leave the nature of light (Suprihadi, 2007). ACCR conductor can operate continuously at temperatures of 210°C to 240°C in an emergency, so it will increase the capacity of the distribution of two to three times greater than using conventional conductors⁽¹¹⁾. In line with the times will be urgent demands need for electricity and the need for communication of information particularly the Internet data, now developed terintergritas conductor cable called OPPC (optical phase conductor) composed of aluminum wire for the first layer surrounding the galvanized steel pipes and steel hollow that in the insert (inserted) optical fiber wrapped in insulation to protect the hot temperatures with increasing current voltage (10) The main function of the transmission network OPPC airways are as channel power from central power to substations, while the fiber optic telecommunications networks both telephone and data networks. Conductor OPPC supposedly able to conduct electricity, is resistant to changes in temperature, pressure and pull force resistance from rain and wind. Then the data necessary mechanical and electrical properties of electricity wires and cables used in optical Telkom Indonesia influenced the climate, topography and current loading on the performance of mechanical work cable channels OPPC. At the beginning of the study and the known characteristics of the mechanical properties of each material OPPC basic cable. While in this study, to determine the mechanical properties of the cable OPPC tensile and impact tests in comparison with cable and OPPC SUTET. Hopefully this research provide significant distribution for State-Owned Enterprises (SOEs), particularly electricity company (PLN) and TELKOM to use OPPC cable. #### RESULTS AND DISCUSSION Data of impact and tensile test results made OPPC cable will compared with cable and cable SUTET OPPC commercial. OPPC cable twisting and twisting loads varied amount of galvanized wire reinforcement, which certainly has different mechanical properties. The following discussion of the results of testing to be performed. #### Impact test The test results impact OPPC cable shown in **Table 1**. Improve strength galvanized steel wire impact loads, the more galvanized steel wire, power impact loads will rise. Galvanized steel wire has HVN 134.66 hardness and tensile strength of 45 kg/mm² (12). When compared to other basic material, for better mechanical strength withstand impact loads. The results of the test data cable OPPC 3 cm in diameter which has the power of the most high-impact weight-bearing on the cable type OPPC 36/6/24 for galvanized steel wire reinforcement more. It is also influenced by twisting torsional stress and the effect is very large. | Twist tension
(RBS %) | Strength of Impact Test (kN) | | | | | |--------------------------|------------------------------|----------|---------|-------------|--| | | OPPC cable (Ø 3) | | | SUTET cable | | | | 36 /2/24 | 36 /4/24 | 36/6/24 | (ACSR) | | | load 25 (RBS
%) | 63,24 | 81,45 | 103,11 | 110 | | | load 50 (RBS
%) | 67,33 | 85,56 | 112,27 | 117 | | Table 1. Result of Impact test of OPPC cable explanation: a) 36 /2/24: 30 wire aluminium, 2 galvanis steel, 24 fiber optic b) 36 /4/24: 30 wire aluminium, 4 galvanis steel, 24 fiber optic c) 36 /6/24: 30 wire aluminium, 6 galvanis steel, 24 fiber optic For torsional stress RBS 25% have impact strength RBS 103.11 kN while 50% of 112.27 kN 9.16 kN happens difference can be seen in **Fig. 1**. tension produces a large torsional twisting OPPC cable twisting tighter and tidy, a little empty cavities on the cable wires will affect the impact strength ⁽¹¹⁾. Fig. 1. Result of impact test OPPC cable Cable has made OPPC impact strength approaching SUTET type ACSR cables are now used in Indonesia, from chart types OPPC cable twisting loads 36/6/24 with 50% RBS has a difference of impact strength of 4.73 kN, while the commercial OPPC cable by 3, 75 kN. OPPC cables made impact strength impact strength of nearly ACSR cable and commercial OPPC, is expected to add 2-4 wire galvanized steel for impact strength equal to commercial cable and can be used in Indonesia⁽¹⁵⁾. Effect on the impact strength OPPC cable withstand shock loads that affected both the rain, wind and earthquakes that make the cable is damaged or broken. ## **Tensile strength** OPPC cable pull testing affects the weight of the power cord until the cord broke. Tensile test results shown in Table 2, explain the magnitude of the tensile strength of each type of cable manufacturing OPPC and ACSR. The result is almost the same as the tensile impact test, the higher the impact strength, the tensile strength is higher. Ultimate tensile strength of the cable diameter of 3 cm OPPC 36/6/26 type RBS with 50% torque load because the load is supported by galvanized steel wire as much as 6 pieces with a tensile strength of 61.26 MPa, while the impact strength of 65 MPa ACSR cable which has a difference 3.74 MPa. The increase in tensile strength is also affected cable twisting torsional stress, where there is a difference between 25 and 50% RBS can be seen in Fig. 3. | Twist tension
(RBS %) | Tensile strength Test (MPa) | | | | | |--------------------------|-----------------------------|----------|----------|-------------|--| | | OPPC cable (Ø 3) | | | SUTET cable | | | | 36 /2/24 | 36 /4/24 | 36 /6/24 | (ACSR) | | | load 25 (RBS
%) | 36,36 | 48,35 | 56,05 | 59 | | | load 50 (RBS
%) | 39,67 | 52,77 | 61,26 | 65 | | Table 2. Result of tensile test OPPC cable explanation: a) 36 /2/24: 30 wire aluminium, 2 galvanis steel, 24 fiber optic b) 36 /4/24: 30 wire aluminium, 4 galvanis steel, 24 fiber optic c) 36 /6/24: 30 wire aluminium, 6 galvanis steel, 24 fiber optic The density of aluminum wire between the cable depends OPPC voltage cable twisting. The more tightly between the aluminum wire, the tensile strength will increase as freestyle between aluminum wire pull test at smaller (Suprihadi, 2007). Tensile strength cables 36/6/26 OPPC type approach OPPC commercial cable tensile strength. The tensile strength of commercial OPPC cable has a difference of 63 MPa tensile strength of 1.74 MPa of artificial OPPC cable. In terms of mechanical properties approaching artificial OPPC cable ACSR cable and commercial OPPC but to test electrical and thermal test yet. Fig. 3 Result of tensile strength OPPC cable ## CONCLUSIONS From the research that has been done, it can be concluded as follows. The impact strength and tensile cables OPPC influenced the amount of galvanized steel wire reinforcement. The more the number of galvanized steel wire reinforcement, tensile strength and higher impact. Tension greater percentage torsional twisting, impact and tensile strength also increased. The higher the voltage torsional twisting, cabling density and neatness OPPC better. # **ACKNOWLEDGEMENTS** The author would like to thank the Directorate General of Higher Education, Ministry of National Education of the Republic of Indonesian who have provided funding for this study Competitive Grant FY 2011-2012. ## REFERENCES - 1. ASTM D256-00 - 2. ANSI C119.4, (Connector testing) - 3. Aluminum Association Guide for Stress-Strain Testing, 1999 - 4. A. S. Pabla., 1994, "Sistem Distribusi Daya Listrik", Erlangga, Jakarta, 1994, p.181. - 5. 3M corporation..2003," *Conductor and Accessory Testing*. Aluminum Conductor Composite Reinforced (ACCR)" Technical Notebook, 2003 - 6. Harsono Wiryosumarto, 2000, Metal Welding Techniques, PT. Pradnya Paramita, Jakarta. - 7. Jakarta newspaper.,2009, "Electrical Problems unflagging" - 8. Nkt cable, 2010., optical OPGW Ground Wire Optical OPPC Phase Conductor and Accessories - 9. Reinhard Girbig, 2005., "Advanced OPPC Accessories for the Use on Power Lines up to 36 kV" - 10. Reinhard Girbig and Philippe Bernon., 2005," OPPC Solutions for 63 kV, 90 kV and 225 kV Power Lines. - 11. Suprihadi.,2007," Mechanical Performance Analysis Work Flow Changes Due ACCR Conductor Line". - 12. Samsudi Raharjo, Solechan, 2012., Characterization studies for the manufacture of optical phase conductor Indonesia's tropical climate conditions. Journal UMP. Vol.03. - 13. SNI 07-0408, 1989 - 14. SNI 08-0409-1989 - 15. SPLN, 1981., Reinforced conductive aluminum steel. State power company standards., SPLN 41-7: - 16. Tempo, 2009., Government is targeting a national electrical capacity 57 thousand Megawatts in 2016., - 17. William D. Stevenson Jr., 1990, "Analysis of Electric Power System", Erlangga, Jakarta, V.10 No.6,1990. - 18. www.tvonenews.tv, 2012