Deteksi Penggunaan Helm pada Pengendara Sepeda Motor Menggunakan Model YOLOv8 dan Streamlit

Ahmad Munip(1*), Muhammad Wahyu Anggana(2), Arrsyad Faizon(3), Afan Arga Ahyana(4), Muhammad Munsarif(5)


(1) Universitas Muhammadiyah Semarang
(2) Universitas Muhammadiyah Semarang
(3) Universitas Muhammadiyah Semarang
(4) Universitas Muhammadiyah Semarang
(5) Universitas Muhammadiyah Semarang
(*) Corresponding Author

Abstract


The high rate of traffic accidents involving motorcyclists is often caused by negligence in using safety equipment such as helmets. This study aims to design an automatic helmet detection system by utilizing the YOLOv8 (You Only Look Once version 8) object detection algorithm. The dataset was sourced from Roboflow and categorized into two classes: "wearing a helmet" and "not wearing a helmet." The training process was carried out on Google Colab using a GPU and integrated into a web-based application via Streamlit, which is capable of detecting both static images and real-time video. The trained model achieved a mAP@0.5 score of 88.8%, indicating a high detection performance. This system is expected to be applicable for monitoring safety compliance on roads and in work environments.y Look Once versi 8). Data yang digunakan diambil dari Roboflow dan diklasifikasikan menjadi dua kategori, yaitu "pakai helm" dan "tanpa helm". Proses pelatihan dilakukan di Google Colab menggunakan GPU, kemudian diintegrasikan ke dalam aplikasi berbasis web melalui Streamlit yang dapat mendeteksi baik gambar statis maupun video secara langsung. Model yang dibangun memperoleh nilai mAP@0.5 sebesar 88.8%, menandakan performa deteksi yang cukup tinggi. This system is expected to be applicable for monitoring safety compliance on roads and in work environments.

Full Text:

PDF

References


N. Fatima, R. Fatima, H. Jamal, and D. Ijteba Sultana, “Safety Helmet Detection Based on Improved YOLOv8”.

Z. Hilkia Batubara, Y. H. Nainggolan, ) M Arfan, and A. Hidayatno, “PERANCANGAN SISTEM DETEKSI PELANGGARAN PENGGUNAAN HELM DENGAN METODE DEEP LEARNING MENGGUNAKAN YOLOV5 ULTRALYTIC.” [Online]. Available: http://ejournal3.undip.ac.id/index.php/transient

K. Patel, V. Patel, V. Prajapati, D. Chauhan, A. Haji, and S. Degadwala, “Safety Helmet Detection Using YOLO V8,” in Proceedings - 2023 3rd International Conference on Pervasive Computing and Social Networking, ICPCSN 2023, Institute of Electrical and Electronics Engineers Inc., 2023, pp. 22–26. doi: 10.1109/ICPCSN58827.2023.00012.

X. Liu et al., “CIB-SE-YOLOv8: Optimized YOLOv8 for Real-time Safety Equipment Detection on Construction Sites.”


Article Metrics

Abstract view : 34 times
PDF - 5 times

DOI: https://doi.org/10.26714/jkti.v3i2.18676

Refbacks

  • There are currently no refbacks.


=======================================================================================

Penerbit:

  • JKTI | Jurnal Komputer dan Teknologi Informasi
  • Program Studi S1 Informatika,  Unimus| Universitas Muhammadiyah Semarang
  • Sekretariat: Gedung Kuliah Bersama II (GKB II) Lantai 7,  Jl. Kedungmundu Raya No 18 Semarang
  • email: informatika@unimus.ac.id, Phone: + +62 813 2504 3677
  • e-ISSN: 2986-7592

Paper Template: Download

View My Stats

------------------------------------------------------------------------------------------------------------------------------------------------------