Jurnal Komputer dan Teknologi Informasi

Vol. 4, No. 1, Januari 2026, pp. 67~77

E-ISSN: 2986-7592, DOI: 10.26714/jkti.v4i1.18612.pp67-77 O

1

\ Penerapan pengenalan pola pada warna puzzle menggunakan
metode hybrid computer vision, edge matching, dan greedy

heuristic

Rizky Pratama Firdauz H.P!, Riski Arya Putra?, Syihab Akbar®, Muhammad Yusuf Rizal*,

Muhammad Munsyarif®

'Program Studi Informatika, Fakultas Teknik dan Ilmu Komputer, Universitas Muhammadiyah Semarang, Semarang, Indonesia
2Program Studi Informatika, Fakultas Teknik dan IImu Komputer, Universitas Muhammadiyah Semarang, Semarang, Indonesia
SProgram Studi Informatika, Fakultas Teknik dan lmu Komputer, Universitas Muhammadiyah Semarang, Semarang, Indonesia
“Program Studi Informatika, Fakultas Teknik dan llmu Komputer, Universitas Muhammadiyah Semarang, Semarang, Indonesia
SProgram Studi Informatika, Fakultas Teknik dan IImu Komputer, Universitas Muhammadiyah Semarang, Semarang, Indonesia

Info Artikel

ABSTRAK

Riwayat Artikel:

Diterima 15, Oktober, 2025
Perbaikan 22, Desember, 2025
Disetujui 13, Januari, 2026

Keywords:

Puzzle

Tepi

Hybridasi
Computer Vision
Edge Matching
Greedy Heuristic

Pengenalan pola dalam penyelesaian puzzle merupakan tantangan yang
kompleks, terutama ketika melibatkan variasi warna dan bentuk potongan.
Penelitian ini mengusulkan pendekatan hybridasi metode computer
vision, edge matching, dan greedy heuristic untuk meningkatkan akurasi dan
efisiensi dalam proses identifikasi dan penyusunan potongan puzzle.
Metode computer vision digunakan untuk mendeteksi dan mengenali warna
dominan pada setiap potongan, edge matching berperan dalam mencocokkan
sisi potongan berdasarkan gambar. Algoritma greedy heuristic untuk
menyusun potongan secara bertahap berdasarkan kecocokan terbaik yang
tersedia pada setiap iterasi. Hasil eksperimen menunjukkan bahwa pendekatan
hybrid ini mampu mempercepat proses penyusunan puzzle serta
meningkatkan tingkat keberhasilan dalam pengenalan dan penempatan
potongan yang tepat dengan akurasi tinggi. Penelitian ini memberikan
kontribusi terhadap pengembangan sistem otomatisasi dalam pemrosesan
visual dan pengenalan pola berbasis warna.

ABSTRACT

Pattern recognition in puzzle solving is a complex challenge, especially when
it involves variations in color and shape of pieces. This research proposes a
hybrid approach using computer vision, edge matching, and greedy heuristic
methods to improve accuracy and efficiency in the process of identifying and
assembling puzzle pieces. Computer vision methods are used to detect and
recognize the dominant color of each piece, while edge matching plays a role
in matching the edges of the pieces based on the image. The greedy heuristic
algorithm gradually assembles the pieces based on the best match available
at each iteration. Experimental results show that this hybrid approach can
accelerate the puzzle assembly process and increase the success rate in
recognizing and placing pieces correctly with high accuracy. This research
contributes to the development of automated systems in visual processing and
color-based pattern recognition.

Ini adalah artikel akses terbuka di bawah lisensi CC BY-SA.

[ONoe

\

Journal homepage: http://ijeecs.iaescore.com

2) E-ISSN: 2986-7592

+ Penulis Korespondensi:

Rizky Pratama Firdauz Heryawan Putra

Program Studi Informatika, Fakultas Teknik dan IImu Komputer, Universitas Muhammadiyah Semarang
Alamat; Gedung GKB 2Lt. 7, Ruang 707, JI.Kedungmundu Raya No.18, Semarang 50273, Indonesia
Email: c2c022024@student.unimus.ac.id

1. PENDAHULUAN

Puzzle adalah bentuk permainan atau tantangan yang dirancang untuk merangsang kemampuan
berpikir seseorang, baik secara logis, analitis, maupun kreatif. Secara umum, puzzle melibatkan proses
pemecahan masalah di mana pemain harus menemukan solusi yang tepat berdasarkan petunjuk, pola, atau
potongan-potongan informasi yang tersedia. Tujuan utama dari puzzle bukan hanya untuk hiburan, tetapi juga
untuk melatih otak agar lebih tajam dan responsif terhadap berbagai situasi. Jenis-jenis puzzle sangat beragam,
mulai dari puzzle fisik yang mengharuskan pemain menyusun potongan gambar, puzzle logika, maupun puzzle
dalam bentuk digital, seperti game interaktif berbasis aplikasi atau website yang menggabungkan elemen visual
untuk menciptakan pengalaman bermain yang lebih kompleks. Pada penelitian ini menggunakan puzzle
berbasis penyusunan warna dan gambar.

Pengenalan pola merupakan salah satu bidang penting dalam kecerdasan buatan dan pengolahan citra
digital, yang memiliki berbagai aplikasi mulai dari pengenalan wajah hingga sistem navigasi otomatis. Dalam
konteks penyusunan puzzle, pengenalan pola menjadi tantangan tersendiri karena melibatkan identifikasi
bentuk, warna, dan kecocokan antar potongan yang kompleks. Puzzle tidak hanya menguji kemampuan spasial,
tetapi juga menuntut sistem untuk memahami hubungan visual antar elemen yang tidak beraturan.

Dengan berkembangnya teknologi computer vision, pendekatan berbasis citra telah menjadi solusi
potensial untuk menyelesaikan puzzle secara otomatis. Deteksi warna dominan pada potongan puzzle dapat
membantu dalam klasifikasi awal, sementara analisis kontur dan tekstur memungkinkan pencocokan sisi yang
lebih akurat. Namun, tantangan tetap ada dalam memilih urutan penyusunan yang efisien dan minim kesalahan.
Untuk mengatasi hal tersebut, diperlukan strategi yang tidak hanya mengandalkan satu metode, tetapi
menggabungkan beberapa pendekatan secara sinergis. Pendekatan hybrid yang mengintegrasikan pengolahan
visual, pencocokan sisi, dan strategi heuristik menawarkan solusi yang lebih adaptif dan efisien dalam
menyusun puzzle secara otomatis. Penelitian ini berfokus pada penerapan pendekatan tersebut untuk
meningkatkan akurasi dan kecepatan dalam proses penyusunan puzzle berbasis warna dan bentuk.

Edge matching banyak digunakan dalam implementasi pengenalan pola, salah satunya penelitian
mengenai pengaplikasian pengenalan objek dan registrasi citra [1]. Penelitian lain mengenai multilevel pada
thresholding [2]. Penelitian tersebut mempunyai beberapa kelebihan seperti tahan dengan perubahan intensitas
dan pencahayaan karena edge matching fokus pada informasi tepi, sehingga tahan dari perubahan pencahayaan
atau warna. Cocok untuk penanganan data yang bising, tepi tidak sempurna karena mendukung berbagai
transformasi geometris. Namun mempunyai kekurangan dalam membedakan objek yang tidak ada atau objek
yang tepiannya hilang karena berpengaruh dalam algoritma ekstraksi tepi sehingga metode ini sensitif dalam
segmemtasi awal. Kelemahan lainnya adalah kesusahan dalam membedakan tepi yang memiliki kesamaan
tinggi yang dapat menurunkan tingkat keakurasiannya, serta kebutuhan ruang yang besar tergantung
transformasi yang dilakukan yang mengharuskan edge berubah setiap frame, statistik jumlah jauh edge berubah
dan representasi secara segmen [3].

Untuk mempertegas pondasi model, ditambahkanlah model lain untuk menutupi kelemahan yang ada
dalam edge matching, metode yang memungkinkan untuk dilakukannya hybridasi dengan metode greedy
heuristic. Greedy heuristic adalah metode konstruktif yang membangun solusi secara bertahap dengan memilih
keputusan terbaik dalam setiap langkah awal tanpa pertimbangan selanjutnya, namun untuk mendapatkan
efektivitas dalam metode ini adalah struktur yang sederhana dan dimana keputusan lokal cenderung mengarah
dalam solusi global serta dibutuhkan kecepatan dalam penyelesaiannya [4]. Greedy heuristic dalam hybridasi
dalam penelitian ini diperlukan untuk mempercepat tahap awal dalam penyusunan dimana banyaknya pilihan
dan ingin cepat dalam membangun struktur awal dan pemilihan potongan yang paling mirip secara warna dari
sisi yang berdekatan. Sedangkan edge matching digunakan dalam validasi kecocokan bentuk dan warna pada
tepi, serta dapat mengurangi kelemahan greedy heuristic dalam pengambilan keputusan sesaat.

Dengan adanya hybridasi metode menggunakan edge matching dan greedy heuristic, membuat kinerja
dari metode computer vision lebih meningkat. Pada tahapan matching dan penyusunan puzzle, metode heuristik
dibutuhkan untuk menyaring dan memilih pasangan yang paling cocok yang setelah itu akan dilakukan. Setelah
itu sistem melakukan rotasi dan translasi potongan untuk menyusun puzzle secara visual. Lalu pada tahap
evaluasi kecocokan, metode computer vision dapat bekerja dengan lebih baik dengan menghitung nilai GAP

\J Kom & Tek Info, Vol. 4, No. 1, Januari 2026: p.67-77

3
J Kom & Tek Info E-ISSN: 2986-7592 a

pada potongan yang dicocokkan, yaitu area yang tidak sesuai atau tidak saling berpasangan. GAP digunakan
sebagai matriks untuk menilai kualitas pencocokan[5].

Aplikasi penyusunan puzzle secara otomatis ditujukan untuk diuji coba pada beberapa industri yang
berkaitan. Pada industri game dan edukasi interaktif dengan menargetkan pengembang game edukatif, aplikasi
pembelajaran anak, dan platform pembelajaran berbasis visual [6]. Aplikasi ini dapat digunakan sebagai sarana
permainan puzzle yang adaptif dengan dukungan pembelajaran kognitif dengan meningkatkan interaksi
pengguna melalui sistem yang dapat memberikan penenyelesaiannya secara otomatis. Pada industri kesehatan
dan rehabilitasi kognitif dapat ditargetkan kepada klinik terapi okupasi dan pusat rehabilitasi sebagai upaya
membantu pasien dengan gangguan kognitif agar dapat melatih kognitif dan motorik [7]. Dalam industri
lainnya, konsep dari aplikasi ini dapat diimplementasikan pada berbagai pendekatan dibidang lain seperti
otomotif dan robotika, dengan pendekatan penyusunan komponen berdasarkan bentuk dan warna dalam proses
produksi dan perakitan. Sasaran lainnya terdapat dalam industri kreatif dan percetakan untuk membantu
pengujian desain puzzle secara otomatis sebelum proses pencetakan serta menciptakan pengalaman interaktif
berbasis augmented reality.

2. METODE

Metode yang digunakan dalam penelitian ini adalah hybridasi antara metode computer vision, edge
matching, dan greedy heuristic dengan masing-masing tujuan untuk memaksimalkan model yang akan
dijalankan. Dataset didapatkan dari beberapa contoh gambar yang didapatkan dari link berikut
https://www.cct.lsu.edu/~cliu/PuzzleDataset/GVCPuzzles.html. Setelah itu dimulailah untuk memproses
untuk membuat website untuk penyusunan puzzle dengan algoritma sebagai berikut

Sumber Gambar
(upload Gambar)

Ekstraksi Fitur Tiap Potongan
» Deteksi Citra Tepi

* Analisis Warna Tiap Potongan

|

[Representusi Tiap Potong sebagui}

node pada Graph

Hitung Kecocokan
antar Potongan

Berdasarkan
Kesamaan Warna
Buat Graph

Kemungkinan
Kecocokan

Berdasarkan
Kesamaan Tepi

Lakukan Graph Matching untuk
penyusunan puzzle

Gambar 1. Algoritma penyusunan puzzle

Tahapan pertama dalam proses ini dimulai dengan pengambilan fitur visual dari gambar utuh yang
diunggah, di mana gambar tersebut dibagi menjadi beberapa segmen (dalam penelitian ini, menggunakan grid
3x3). Setiap segmen dianalisis menggunakan teknik Computer Vision untuk menemukan karakteristik visual
seperti deteksi tepi dan distribusi warna.

N

Penerapan pengenalan pola pada warna puzzle menggunakan metode hybrid computer vision, edge
matching, dan greedy heuristic (Rizky Pratama Firdauz H.P)

https://www.cct.lsu.edu/~cliu/PuzzleDataset/GVCPuzzles.html

4) E-ISSN: 2986-7592
t_pieces(image path, output_folder, session_id):
imread(image path)

(1

h, w = img.

rows, cols

ph, pw = h // rows, w // cols
extracted_paths = []

rows):

ion_id} {i} {j} 4
save_path .path.join(output_folder, filename)
imwrite(save path, piece)
path.joi , e d", filename))

Gambar 2. Potongan Kode Computer Vision
Setelah proses ekstraksi fitur menggunakan Computer Vision, dilakukan penilaian kesesuaian antar
bagian puzzle dengan menggunakan metode Edge Matching.
compute_edge similarity(imgl, img2):
right = imgl[:, -5:, :].astype("int3
leftt = img2[:, :5, :].astype("int]

r * cols + (c + 1)
= pieces[order[right_idx]]
compute_edge similarity(current, neighbor)

i |
down_. (r+:
nei = pieces[order[down_.

down_score = compute_edge similari

score += down_score
return score

Gambar 3. Potongan Kode Edge Matching
Di tahap ini, sistem membandingkan tepi-tepi dari bagian puzzle berdasarkan kesamaan nilai piksel
yang terdapat pada bagian tersebut. Skor kesesuaian dihitung dengan menemukan selisih absolut dari rata-rata
piksel di tepi kiri dan kanan dari dua bagian yang dibandingkan. Hasil dari penghitungan kesesuaian tersebut
selanjutnya ditampilkan dalam bentuk graf, di mana setiap simpul melambangkan satu bagian puzzle, dan
bobot antar simpul menunjukkan tingkat kesesuaian di antara bagian-bagian tersebut.

\J Kom & Tek Info, Vol. 4, No. 1, Januari 2026: p.67-77

5
J Kom & Tek Info E-ISSN: 2986-7592 a

session_id):
in pieces_paths]

for p in pieces):

n = len(pieces)

rows, cols = }

h, w = piec]1.shape[:2]

result _img = np.zeros({(h*rows, w*cols, 3), dtype=np.uint8)

for idx in range(n):
r, € = divmod(
result_img[r*h:(r+1) *w:(c+1)*w] = pieces[idx]

Gambar 4. Potongan Kode Greedy Heuristic
Untuk menyusun kembali puzzle, sistem menerapkan pendekatan Greedy Heuristic, yaitu memilih
pasangan bagian dengan skor kesesuaian tertinggi secara bertahap tanpa perlu mengecek setiap kombinasi
secara menyeluruh. Pendekatan ini diambil karena lebih efisien dalam hal perhitungan dan cukup efektif bila
jumlah bagian puzzle terbatas. Dengan penggabungan ketiga metode tersebut, diharapkan sistem mampu
menyusun kembali puzzle secara otomatis dengan hasil yang tepat dan mirip dengan gambar aslinya.

3. HASIL DAN PEMBAHASAN

used_cols = set()
assignments = []

for _ in range(n):
min_cost

if i in used_rows: continue

for j in rang

e(n):
if j in used_cols: continue

if cost_matrix[i][j] < min_cost:
min_cost = cost_matrix[i][§]

min_row, min_col = i, j
if min_row != -1 and min_col != -1:
assignments. append((min_row, min_col))
used_rous. add(min_row)
used_cols.add(min_col)
return assignments

Fungsi greedy_assignment merupakan implementasi dari algoritma Greedy Heuristic yang digunakan
untuk menyelesaikan assignment problem atau masalah penugasan, di mana tujuannya adalah mencocokkan
setiap baris ke kolom dengan biaya seminimal mungkin berdasarkan matriks biaya (cost_matrix). Fungsi ini
bekerja dengan cara memilih pasangan baris dan kolom yang belum digunakan dengan nilai biaya terkecil
secara iteratif. Pertama-tama, fungsi mencatat ukuran dari matriks biaya dan menyiapkan dua himpunan
used_rows dan used_cols untuk mencatat baris dan kolom yang telah dialokasikan. Lalu dalam setiap iterasi
sebanyak n kali, fungsi mencari kombinasi baris dan kolom dengan nilai biaya terkecil yang belum digunakan,
lalu mencatatnya ke dalam daftar assignments. Setelah sebuah pasangan dipilih, indeks baris dan kolom
tersebut ditandai sebagai telah digunakan agar tidak dipilih kembali di iterasi berikutnya. Proses ini dilakukan
hingga semua elemen telah dipasangkan. Pada akhirnya, fungsi akan mengembalikan daftar pasangan baris dan
kolom yang merepresentasikan hasil penugasan dengan pendekatan greedy.

Penerapan pengenalan pola pada warna puzzle menggunakan metode hybrid computer vision, edge
matching, dan greedy heuristic (Rizky Pratama Firdauz H.P)

6) E-ISSN: 2986-7592

plt.axis('off")

plt.tight layout()
plt.show()

Function to extract edge features (example: average color along edges)
def extract_edge features(tile):
h, w, _ = tile.shape
top_edge = np.mean(tile[®, :, :], axis=0)
bottom_edge = np.mean(ti 1]
left_edge = np.mean(tile[:, @ xis=8)
right_edge = np.mean(tile[:, w-1, :]
return {'top': top_edge, 'bottom': bottom_edge, 'left': left_edge, 'right': right_edge}

, axis=0)

Function to calculate compatibility cost between two edges
def edge_compatibility cost(edgel, edge2):
return np.sum((edgel - edge2)**2)

Function to build the cost matrix for matching
def build cost_matrix(shuffled_tiles, original_tiles_features, rows=3, cols=3):
n = len(shuffled tiles)
cost_matrix = np.zeros((n, n))
shuffled_tiles_features = [extract_edge_features(tile) for tile in shuffled_tiles]

for i in range(n):
for j in range(n):
Calculate cost based on compatibility with surrounding tiles in the original position
original_row, original_col = divmod(j, cols)
shuffled_row, shuffled_col = divmod(i, cols) # Assume shuffled tile i goes to position j

Kode ini bertujuan untuk menyusun kembali gambar puzzle yang telah diacak berdasarkan kecocokan
antar sisi (edge) dari setiap potongan gambar (tile). Proses dimulai dengan menyembunyikan sumbu tampilan
dan merapikan layout visual untuk menampilkan gambar yang akan diolah. Kemudian, dari setiap tile diekstrak
fitur sisi-sisinya—atas, bawah, kiri, dan kanan—dengan menghitung rata-rata nilai warna (RGB) dari masing-
masing sisi. Fitur-fitur ini disimpan dalam dictionary yang merepresentasikan setiap sisi tile.

Selanjutnya, dilakukan perhitungan edge compatibility cost atau tingkat ketidakcocokan antara dua sisi
menggunakan metode Mean Squared Error (MSE), yaitu dengan mengkuadratkan selisih nilai warna dan
menjumlahkannya. Nilai ini menunjukkan seberapa mirip atau berbedanya dua sisi yang dibandingkan.

Berdasarkan hasil perhitungan tersebut, dibentuklah cost matrix (matriks biaya) berukuran n x n, yang
digunakan untuk mencocokkan tile acak ke posisi grid aslinya. Matriks ini dibangun dengan membandingkan
setiap tile dengan semua kemungkinan posisi di grid menggunakan dua perulangan, sementara fungsi divmod
digunakan untuk mengubah indeks satu dimensi menjadi koordinat baris dan kolom.

Meski bagian akhir perhitungan cost matrix belum terlihat secara lengkap dalam potongan kode,
keseluruhan proses ini membentuk dasar untuk penyusunan ulang puzzle. Proses penyusunan optimalnya akan
dilanjutkan menggunakan algoritma seperti pendekatan heuristik lainnya seperti Greedy, untuk menentukan
urutan tile terbaik berdasarkan nilai kecocokan sisi.

cost = @
Check compatibility with potential neighbors in the original grid
if original_row > @: # Check top neighbor

cost += edge_compatibility_cost(shuffled_tiles_features[i]['top'], original tiles features[j - cols]['bottom'])
if original row < rows - 1: # Check bottom neighbor

cost 4= edge_compatibility cost(shuffled tiles features[i]['bottom'], original tiles features[j + cols]['top'])
if original col > 0: # Check left neighbor

cost += edge_compatibility_cost(shuffled_tiles features[i]['left'], original tiles features[j - 1]['right'])
if original col < cols - 1: # Check right neighbor

cost += edge_compatibility cost(shuffled_tiles features[i]['right'], original tiles features[j + 1]['left'])
cost_matrix[i, j] = cost

return cost_matrix

def reconstruct_with_greedy(shuffled_tiles, rows=3, cols=3):
n = len(shuffled_tiles)
original tiles = split_image_into_tiles(img, rows, cols)
original _tiles_features = [extract_edge_features(tile) for tile in original_tiles]

print("Membuat matriks biaya (Greedy)...")
cost_matrix = build_cost_matrix(shuffled_tiles, original_tiles_features, rows, cols)

print("Menjalankan algoritma Greedy...")
assigned_rows = set()
reconstructed_tiles = [None] * n
tile_indices = [None] * n

for col in range(n): # Setiap posisi asli
Cari tile teracak terbaik (cost paling kecil) yang belum dipakai
min_cost = float('inf')
best_row = None
for row in range(n):
if row not in assigned_rows and cost_matrix[row, col] < min_cost:
min_cost = cost_matrix[row, col]
best_row = row

best_row = row

if best_row is not None:
reconstructed_tiles[col] = shuffled_tiles[best_row]
tile_indices[col] = best_row

assigned_rows.add(best_row)

return reconstructed_tiles, tile_indices

\J Kom & Tek Info, Vol. 4, No. 1, Januari 2026: p.67-77

7
J Kom & Tek Info E-ISSN: 2986-7592 a

Fungsi reconstruct_with_greedy bertujuan untuk menyusun kembali gambar yang telah diacak
(puzzle gambar) menggunakan pendekatan Greedy Heuristic. Fungsi ini pertama-tama menerima parameter
berupa kumpulan tile (bagian-bagian gambar yang telah diacak), serta jumlah baris dan kolom dari gambar
tersebut (default-nya 3x3). Langkah pertama dalam fungsi ini adalah memanggil split_image_into_tiles untuk
membagi gambar asli (img) menjadi potongan-potongan kecil sesuai dengan ukuran baris dan kolom, dan
kemudian setiap tile-nya diekstrak fitur tepinya dengan extract_edge_features, menghasilkan data ciri tepi dari
setiap potongan gambar asli.

Setelah fitur tepi dikumpulkan, fungsi membuat matriks biaya (cost matrix) menggunakan
build_cost_matrix, yang mengukur seberapa mirip antara setiap tile acak dan tile asli berdasarkan fitur tepinya.
Proses ini penting karena akan menentukan seberapa cocok suatu tile ditempatkan di posisi tertentu.

Kemudian, fungsi menjalankan algoritma greedy dengan cara memilih secara iteratif tile acak terbaik
(yaitu yang memiliki biaya terkecil di kolom tertentu dan belum digunakan sebelumnya). Ini dilakukan dengan
perulangan untuk setiap kolom (posisi asli tile), di mana fungsi mencari baris (tile acak) dengan nilai terkecil
di cost matrix dan belum dipakai. Jika ditemukan, tile tersebut ditambahkan ke daftar reconstructed_tiles di
posisi kolom tersebut dan indeksnya disimpan di tile_indices.

Hasil akhirnya adalah dua buah list: reconstructed_tiles, yaitu daftar potongan gambar yang sudah
tersusun ulang berdasarkan heuristik greedy, dan tile_indices, yaitu urutan indeks dari tile acak yang digunakan
untuk menyusun gambar tersebut.

ching percentage between two tiles
(tilel, tile2):

le for simpler comparison
grayl = cv2.cvtColor(tilel, cv2.COLOR_BGR2GRAY)

gray2 = cv2.cvtColor(tile2, cv2.COLOR_BGR2GRAY)

Calculate Mean Squared Error
mse = np.mean((grayl - gray2) ** 2)
t MSE to similarity percentage (inverse relationship)

return similarity

Fungsi calculate_tile_matching digunakan untuk mengukur tingkat kemiripan antara dua potongan
gambar (tile) dalam bentuk persen. Langkah pertama dalam fungsi ini adalah mengubah kedua tile, yaitu tilel
dan tile2, ke dalam format grayscale menggunakan OpenCV (cv2.cvtColor) agar perbandingan lebih sederhana
karena hanya melibatkan satu kanal warna. Setelah itu, fungsi menghitung nilai Mean Squared Error (MSE),
yaitu rata-rata kuadrat selisih piksel antar kedua gambar grayscale. Nilai MSE ini menunjukkan seberapa besar
perbedaan antara dua tile: semakin kecil MSE, semakin mirip kedua gambar tersebut. Kemudian, nilai MSE
ini dikonversi menjadi persentase kemiripan (similarity) dengan rumus similarity = 100 * (1 - mse / max_mse),
di mana max_mse adalah nilai MSE maksimum untuk gambar 8-bit (yaitu 2552). Hasil akhir dari fungsi ini
adalah angka kemiripan dalam persentase, yang bisa digunakan untuk menentukan seberapa cocok dua tile
dalam puzzle gambar.

Function to run the puzzle proc
def run

1a

€s
le(img, rows=3, cols=3):

print("Memulai proses puzzle...")

print(f"Memotong gambar menjadi {rows*cols} bagian...™)
original_tiles = split image_into_tiles(img, rows, cols)
print("Mengacak potongan puzzle...")

shuffled tiles = shuffle_tiles(original_tiles)

print("\nMemulai proses rekonstruksi puzzle...")
print(“Mohon tunggu, ini mungkin memerlukan waktu beberapa saat...™)

reconstructed_tiles, tile_indices = reconstruct_with_greedy(shuffled_tiles, rows, cols)

if reconstructed tiles is None:
print("Rekonstruksi gagal.™)
return

Display all puzzles side by side

tile_sets = [original tiles, shuffled_tiles, reconstructed_tiles]
titles = ["Puzzle Asli", "Puzzle Teracak", "Hasil Rekonstruksi"]
display tiles_side_ by side(tile_sets, titles, rows, cols)

Fungsi run_puzzle didefinisikan untuk menjalankan seluruh proses rekonstruksi puzzle gambar. Baris
pertama dari fungsi ini melakukan validasi awal dengan memeriksa apakah parameter image bernilai None.
Jika ya, maka fungsi akan langsung mengembalikan nilai dan tidak melanjutkan proses. Hal ini dilakukan untuk

N

Penerapan pengenalan pola pada warna puzzle menggunakan metode hybrid computer vision, edge
matching, dan greedy heuristic (Rizky Pratama Firdauz H.P)

8) E-ISSN: 2986-7592

_memastikan bahwa input gambar tersedia sebelum proses dilanjutkan. Setelah itu, gambar akan dibagi menjadi

beberapa potongan kecil (tiles) berdasarkan jumlah baris dan kolom menggunakan fungsi
split_image_into_tiles. Potongan-potongan gambar yang dihasilkan akan disimpan dalam variabel
original_tiles.

Selanjutnya, fungsi shuffle_tiles digunakan untuk mengacak urutan potongan gambar sehingga
menciptakan kondisi puzzle yang acak. Hasil pengacakan ini disimpan dalam shuffled_tiles. Setelah itu, sistem
mencetak bahwa proses rekonstruksi akan dimulai. Sebagai gantinya, gambar akan direkonstruksi
menggunakan pendekatan Greedy Heuristik, yang berusaha mencocokkan potongan-potongan gambar
berdasarkan kesamaan (similarity) piksel secara berurutan dan memilih kecocokan terbaik di setiap langkah.

Fungsi reconstruct_with_greedy(shuffled_tiles, rows, cols) dijalankan untuk menyusun kembali
gambar yang teracak tersebut. Jika proses rekonstruksi gagal, akan dicetak pesan bahwa rekonstruksi gagal dan
fungsi berhenti. Namun jika berhasil, sistem akan mencetak bahwa hasil puzzle akan ditampilkan. Variabel
tile_sets disiapkan sebagai tuple yang berisi tiga versi gambar: versi asli (original_tiles), versi acak
(shuffled_tiles), dan hasil rekonstruksi (reconstructed_tiles). Masing-masing dari ketiga gambar ini diberi label
menggunakan titles, yaitu: “Asli,” “Telah Teracak,” dan “Telah Direkonstruksi.” Terakhir, fungsi display _tiles
digunakan untuk menampilkan ketiganya secara berdampingan dalam satu jendela tampilan agar dapat
dibandingkan secara visual.

[>) # Calculate and display matching percentages with colored marks

pr n Kecocokan Til

pr {
total_similarity = @

for i in range(len(original_tiles)):

ity = calculate_tile matching(original tiles[i], reconstructed_tiles[i])
_similarity += similarity
bahkan centang hijau

£"{RED} X {RESET}"

print(f"Rata-rata kecocokan seluruh puzzle: {average_similarity:.2f}% {mark}")

--- Main Execution ---
"silakan unggah gambar Anda.")
= upload_image()

Kode ini digunakan untuk menghitung dan menampilkan persentase kecocokan antara tile (potongan
gambar) asli dengan hasil rekonstruksi. Pertama-tama, program mencetak judul “Laporan Kecocokan Tile"
sebagai penanda awal laporan evaluasi. Kemudian, variabel total similarity diinisialisasi ke 0 untuk
menampung total dari nilai kemiripan seluruh tile.

Setelah itu, didefinisikan beberapa kode warna ANSI untuk menandai output terminal: hijau
(GREEN) untuk hasil cocok, merah (RED) untuk tidak cocok, dan RESET untuk mengembalikan ke warna
default. Ini hanya akan terlihat jika dijalankan di lingkungan yang mendukung warna terminal.

Program kemudian masuk ke dalam perulangan for untuk setiap indeks tile. Dalam loop ini,
calculate_tile_similarity() digunakan untuk menghitung kemiripan (similarity) antara tile asli dan tile hasil
rekonstruksi berdasarkan indeks ke-i. Nilai kemiripan ini ditambahkan ke total_similarity. Jika nilai similarity
di atas 90%, output ditandai dengan warna hijau dan disebut "COCOK", jika tidak, akan ditandai merah dan
disebut "TIDAK COCOK".

Setelah semua tile dicek, program menghitung rata-rata kecocokan dengan membagi total_similarity
dengan jumlah tile. Berdasarkan nilai rata-rata ini, jika lebih dari 90%, ditampilkan dengan warna hijau, jika
tidak maka berwarna merah. Output akhir mencetak persentase kecocokan total puzzle dan warna statusnya.
Terakhir, bagian eksekusi utama program meminta pengguna untuk mengunggah gambar dengan
upload_image(), dan menyimpannya ke dalam variabel img. Fungsi ini menjadi titik awal proses rekonstruksi
puzzle secara keseluruhan.

Check if image was uploaded successfully
if None:

e(img)

print("Tidak ada gambar yang diunggah atau terjadi kesalahan saat mengunggah.")

Kode ini berfungsi untuk memeriksa apakah gambar berhasil diunggah sebelum menjalankan proses
puzzle. Pada baris pertama, terdapat komentar # check if image was uploaded successfully sebagai penanda
fungsi dari blok kode ini. Selanjutnya, kondisi if img is not None: digunakan untuk memastikan bahwa variabel
img telah berisi gambar hasil unggahan.

\J Kom & Tek Info, Vol. 4, No. 1, Januari 2026: p.67-77

9
J Kom & Tek Info E-ISSN: 2986-7592 a

Jika gambar berhasil diunggah (tidak None), maka fungsi run_puzzle(img) akan dipanggil untuk
memulai seluruh proses pemecahan dan rekonstruksi puzzle berdasarkan gambar tersebut. Namun, jika img
adalah None, maka artinya tidak ada gambar yang berhasil diunggah atau terjadi kesalahan saat proses upload.
Dalam kasus ini, program mencetak pesan error "Tidak ada gambar yang diunggah atau terjadi kesalahan saat
mengunggah."

Secara keseluruhan, bagian kode ini bertugas sebagai pengaman (error handling) agar program tidak
mencoba memproses gambar yang belum tersedia, sehingga mencegah error lebih lanjut dalam eksekusi.
S ""égab:‘oi;m::;;"da- Upload widget is only available when the cell has been executed in the current browser session. Please rerun this cell to enable.

Saving.fBS75889-Se§3;4d38-b4b7»a487c03b44ea<png to f@875889-5e13-4d38-bab7-a487c@3b4dea (1).png
st i i S

Mengacak potongan puzzle...

Memulai proses rekonstruksi puzzle...

Hohon tunggu, ini mungkin memerlukan waktu beberapa saat...

Membuat matriks biaya (Greedy)...

Menjalankan algoritma Greedy...

Menampilkan hasil puzzle:

Puzzle Asli Puzzle Teracak Hasil Rekonstruksi

Gambar ini menunjukkan hasil dari proses pemecahan dan rekonstruksi puzzle gambar menggunakan
algoritma pemrograman di Google Colab. Proses dimulai dengan mengunggah gambar berjudul
Dwonload.jpeg sebagai input. Selanjutnya, gambar asli tersebut dipecah menjadi beberapa bagian atau tile.
Setelah itu, tile yang telah dipotong diacak posisinya sehingga menghasilkan tampilan puzzle acak yang
berbeda dari gambar aslinya. Untuk menyusun kembali puzzle tersebut, digunakan algoritma greedy guna
mencocokkan tile berdasarkan kemiripan. Hasil visual dari proses ini ditampilkan dalam tiga bagian: gambar
asli sebelum diacak, tampilan puzzle acak, dan hasil rekonstruksi oleh algoritma. Terlihat bahwa hasil
rekonstruksi sangat mirip dengan gambar aslinya, yang menunjukkan bahwa algoritma berhasil menyusun
ulang tile dengan akurat berdasarkan tingkat kemiripan masing-masing tile.

Laporan Kecocokan Tile:

Tile 1: 100.00% cocok dengan posisi asli v
Tile 2: 100.00% cocok dengan posisi asli v
Tile 3: 100.00% cocok dengan posisi asli v
Tile 4: 100.00% cocok dengan posisi asli v
Tile 5: 100.00% cocok dengan posisi asli

Tile 6: 100.00% cocok dengan posisi asli v
Tile 7: 100.00% cocok dengan posisi asli v
Tile 8: 100.00% cocok dengan posisi asli

Tile 9: 100.00% cocok dengan posisi asli v

Rata-rata kecocokan seluruh puzzle: 100.00%

Penjelasan output:

- Setiap tile (potongan gambar) dinilai kecocokannya berdasarkan posisi asli.

- Terdapat 9 tile, masing-masing diberi persentase kecocokan:

- Semua tile memiliki nilai 100.00% kecocokan, artinya tile berhasil ditempatkan ke posisi semula
- Tanda "v" menunjukkan bahwa tile tersebut benar dan sesuai dengan posisi semula.

- Di bagian bawah, tercantum Rata-rata kecocokan seluruh puzzle: 100.00% v/, yang menunjukkan bahwa
proses rekonstruksi berhasil sempurna.

4. KESIMPULAN

Penelitian ini berhasil menunjukkan bahwa pendekatan hybrid yang menggabungkan computer vision,
edge matching, dan greedy heuristic mampu meningkatkan akurasi dan efisiensi dalam proses penyusunan
puzzle berbasis warna dan bentuk. Metode computer vision digunakan untuk mendeteksi fitur visual seperti
warna dominan dan tepi gambar, edge matching berperan dalam mencocokkan sisi potongan berdasarkan
kontur dan tekstur, sementara greedy heuristic mempercepat proses penyusunan dengan memilih pasangan
potongan terbaik secara bertahap.

Penerapan pengenalan pola pada warna puzzle menggunakan metode hybrid computer vision, edge
matching, dan greedy heuristic (Rizky Pratama Firdauz H.P)

10 a E-ISSN: 2986-7592

. Hasil eksperimen menunjukkan bahwa sistem yang dibangun mampu menyusun kembali puzzle
secara otomatis dengan tingkat keberhasilan yang tinggi, bahkan mencapai 100% kecocokan dalam pengujian.
Pendekatan ini juga memiliki potensi aplikasi luas di berbagai industri, seperti game edukatif, rehabilitasi
kognitif, robotika, dan percetakan kreatif, serta dapat mendukung pengembangan sistem berbasis augmented
reality.

Aplikasi Penyusun Puzzle

- . e e e e e e e -

|
|
Klik untuk unggah gambar :
Format gambar: PNG, JPG, JPEG |
|
|

Unggah Gambar

Ekstrak Puzzle Hasil Duzilo Tersusun:
Potongan Puzzle:

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih yang sebesar-besarnya kepada Bapak Dr. Muhammad Munsarif,
S.Kom., M.Kom. selaku dosen pengampu mata kuliah Pengenalan Pola atas bimbingan, arahan, dan
kesempatan yang telah diberikan sehingga sehingga jurnal berjudul " Penerapan pengenalan pola pada warna
puzzle menggunakan metode hybrid computer vision, edge matching, dan greedy heuristic" ini dapat disusun
dan diselesaikan dengan baik. Ucapan terima kasih juga disampaikan kepada seluruh pihak yang telah
berkontribusi, baik secara langsung maupun tidak langsung, dalam proses pelaksanaan penelitian dan

\J Kom & Tek Info, Vol. 4, No. 1, Januari 2026: p.67-77

11

J Kom & Tek Info E-ISSN: 2986-7592 a

penyusunan jurnal ini, termasuk rekan-rekan yang turut membantu dalam pengumpulan data dan pengujian
sistem. Semoga hasil penelitian ini dapat memberikan manfaat dan kontribusi nyata dalam pengembangan

teknologi

REFERENCES

[1] G. Borgefors, “Hierarchical chamfer matching.,” vol. I, no. 6, 1985.

[2] L. Hertz and R. W. Schafer, “Multilevel thresholding using edge matching,” Comput. Vision, Graph. Image
Process., vol. 44, no. 3, pp. 279-295, 1988, doi: 10.1016/0734-189X(88)90125-9.

[3] M. J. Hossain, M. A. A. Dewan, and O. Chae, “A flexible edge matching technique for object detection in dynamic
environment,” Appl. Intell., vol. 36, no. 3, pp. 638-648, 2012, doi: 10.1007/s10489-011-0281-4.

[4] E. A. Silver, R. Victor, V. Vidal, and D. de Werra, “A tutorial on heuristic methods,” Eur. J. Oper. Res., vol. 5,
no. 3, pp. 153-162, 1980, doi: 10.1016/0377-2217(80)90084-3.

[5] R. W. Webster, P. S. LaFollette, and R. L. Stafford, “Isthmus Critical Points for Solving Jigsaw Puzzles in
Computer Vision,” IEEE Trans. Syst. Man Cybern., vol. 21, no. 5, pp. 1271-1278, 1991, doi: 10.1109/21.120080.

[6] N. Aral, F. Gursoy, and M. C. Yasar, “An Investigation of the Effect of Puzzle Design on Children’s Development
Areas,” Procedia - Soc. Behav. Sci., vol. 51, pp. 228-233, 2012, doi: 10.1016/j.sbspro.2012.08.150.

[71 T. Nef et al., “Development and Evaluation of Maze-Like Puzzle Games to Assess Cognitive and Motor Function

in Aging and Neurodegenerative Diseases,” Front. Aging Neurosci.,, vol. 12, no. April, 2020, doi:
10.3389/fnagi.2020.00087.

Penerapan pengenalan pola pada warna puzzle menggunakan metode hybrid computer vision, edge
matching, dan greedy heuristic (Rizky Pratama Firdauz H.P)

