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ABSTRACT

Rapid histamine accumulation in tropical fisheries constitutes a substantial public health hazard, particularly
via scombroid poisoning, and underscores the need for rigorous, data-driven cold-chain surveillance. Artisanal
vessels (< 30 GT), however, predominantly depend on ice-based cooling strategies that are thermally unstable
and lack real-time diagnostic functionality, thereby failing to sufficiently suppress microbial growth kinetics under
ambient conditions that frequently exceed 30 °C. To address this gap, we propose a Cascaded Spatio-Temporal
Deep Inference Architecture that couples a Convolutional Neural Network (CNN) for spatial feature denoising with
a Long Short-Term Memory (LSTM) network for temporal kinetic modeling. This hybrid architecture assimilates
high-frequency thermal measurements from an optimized R404A vapor-compression refrigeration system and
predicts histamine risk indices under Arrhenius-based kinetic constraints. Field deployment on a 10 GT vessel
demonstrated that the system maintained a highly stable storage temperature of —20.1 + 0.5 °C. The proposed
model exhibited high predictive accuracy with an R? of 0.97 and an RMSE of 0.45 °C, significantly outperforming
a Linear Regression baseline (RMSE = 1.85°C, p < 0.01). Importantly, the system extended the prime-quality
shelf life by more than 52 hours while keeping histamine concentrations well below the U.S. FDA limit of 50 mg/kg.
Collectively, these findings support a scalable health informatics framework and indicate that Al-driven predictive
certification can substantially reduce food safety risks in resource-limited maritime supply chains.

KEYWORDS

Scombroid Poisoning; Cold Chain Monitoring; Hybrid CNN-LSTM; Histamine Prediction; Health Informatics;
R404A Refrigeration

1. Introduction

The integrity of the global seafood supply chain constitutes a fundamental determinant of food security and a
critical domain of inquiry within public health informatics. Scombroid fish species, such as skipjack (Katsu-
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wonus pelamis), exhibit a pronounced susceptibility to the rapid formation of biogenic amines—predominantly
histamine—when subjected to thermal abuse during the post-harvest phase [1, 2]. Histamine intoxication,
clinically recognized as scombroid poisoning, remains a widespread foodborne hazard worldwide, with
disproportionate impact on vulnerable population groups [3, 4]. In tropical archipelagic regions, ambient
temperatures that frequently exceed 30°C markedly accelerate microbial growth kinetics, thereby necessitat-
ing an exceptionally robust and continuously maintained cold chain from the point of capture onward [5, 6].
Although artisanal fishing vessels (< 30 GT) play a central role in the marine economies of these settings,
they often constitute the most fragile component of the supply chain because of substantial technological
limitations in sustaining stable sub-zero storage conditions [7, 8].

To address these thermal vulnerabilities, recent engineering efforts have centered on advanced thermal
insulation materials and optimized active refrigeration strategies. Zhang et al. [9] demonstrated that the
incorporation of Phase Change Materials (PCM) into polyurethane foam can substantially enhance thermal
inertia, while Duan et al. [10] provided a comprehensive review of the deployment of such thermal energy
storage solutions in transport logistics. In parallel, progress in active cooling technologies has been reported
by Maiolo et al. [11] and Sun et al. [12], who investigated vapor-compression refrigeration architectures and
alternative refrigerants to improve the energetic performance of mobile cold storage systems. Nonetheless,
mechanical and material improvements alone are insufficient in the absence of real-time predictive and
diagnostic capabilities. Current FDA regulations underscore that safeguarding food safety requires continuous
acquisition and analysis of time-temperature profiles to effectively constrain pathogen proliferation [13].

Emerging paradigms in intelligent systems have sought to close this methodological and operational
gap through the integration of the Internet of Things (IoT) with Machine Learning (ML). Prior studies by
Tsironi et al. [14] and Alfian et al. [15] employed regression-based predictive models coupled with real-time
sensor networks to estimate product freshness. Within the Deep Learning domain, Han et al. [16] successfully
implemented Long Short-Term Memory (LSTM) architectures to forecast temperature dynamics in refrigerated
containers, whereas Wang et al. [17] applied Recurrent Neural Networks (RNN) to detect disruptions in the
cold chain by leveraging spectral signal profiles. Despite these advances, a substantial technical gap remains
in the current State-of-the-Art (SOTA). Specifically, conventional statistical approaches and standard Artificial
Neural Networks (ANN) exhibit limited capacity to model the high-dimensional, strongly non-linear, and
temporally coupled dependencies that characterize operational conditions in tropical small-scale fisheries.

Standard Convolutional Neural Networks (CNNs) are highly effective for spatial feature extraction; how-
ever, they inherently lack the temporal memory capacity necessary to accurately characterize the cumulative
kinetics of bacterial proliferation as described by Boonsumrej and Chaiyapech [18]. In contrast, standalone
Long Short-Term Memory (LSTM) networks, although well-suited for time-series modeling, exhibit reduced
robustness to thermal noise and abrupt spatial perturbations, such as rapid heat ingress during frequent hatch
openings, that are characteristic of artisanal refrigeration vessel operations [19]. Moreover, the prevailing
body of literature typically considers thermodynamic refrigeration efficiency and microbiological/clinical risk
as largely independent domains, thereby creating a gap for an integrated, real-time forecasting paradigm that
explicitly links mechanical refrigeration performance to resultant clinical safety outcomes [20].

To address these limitations, this study introduces an Al-driven Health Informatics Framework that
systematically integrates optimized refrigeration thermodynamics with predictive microbiological safety
modeling. We develop a Hybrid LSTM-CNN architecture tailored for multivariate time-series analysis of
histamine formation. In this configuration, the CNN module functions analogously to a high-pass filter,
extracting salient spatio-temporal features from volatile sensor streams, while the LSTM module captures
long-range temporal dependencies governed by Arrhenius-Schoner-type kinetic behavior. Utilizing high-
resolution thermal data derived from an optimized R404A—polyurethane (PU) refrigeration system, the
proposed framework formulates a “Thermal Inertia” model that substantially improves predictive robustness
under highly variable, tropical environmental conditions.

The principal technical contributions of this study are summarized as follows:

+ Design of a Dual-Stream Hybrid LSTM-CNN Architecture: We introduce a multilayer deep
learning architecture that concurrently models spatial thermal spike patterns and temporal micro-
bial dynamics. This dual-stream configuration mitigates vanishing-gradient phenomena and reduces
susceptibility to measurement noise that typically affect single-stream architectures.

« Formalization of Thermo-Biological Informatics: We develop a rigorous mathematical frame-
work that couples R404A-optimized thermodynamic descriptors with real-time biogenic amine (BA)
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accumulation profiles, thereby establishing an integrated informatics layer that quantitatively links
refrigeration performance to clinically relevant histamine risk.

« Empirical Assessment in High-Variability Artisanal Settings: Using systematic benchmarking,
we show that the proposed framework yields substantial reductions in Mean Absolute Error (MAE) and
Root Mean Square Error (RMSE), and furnishes robust early-warning indicators of histamine hazard,
even under extreme tropical thermal stress conditions.

The remainder of this paper is structured as follows. Section 2 introduces the necessary preliminaries,
including the formal mathematical notation underlying the LSTM—-CNN framework and the kinetics of
biogenic amines. Section 3 describes the proposed methodology and the corresponding system architecture in
detail. Section 4 reports the experimental results, together with statistical validation based on the Wilcoxon
signed-rank test, and provides an extensive discussion of the findings. Finally, Section 5 summarizes the main
conclusions of the study and delineates potential avenues for future research.

2. Preliminaries

This section establishes the formal theoretical foundation and mathematical rigor required to comprehend the
proposed hybrid informatics framework. We define the fundamental notations, the kinetics of biogenic amine
degradation, and the baseline deep learning architectures used as the benchmark for real-time risk prediction.

2.1. Table of Notations

To ensure consistency throughout the manuscript, the primary mathematical symbols and operators are
defined in Table 1.

Table 1. Formal mathematical notations and symbols.

Symbol Definition Unit/Domain
T Time-series temperature vector from R404A sensors °C

C(t) Concentration of histamine at time ¢ mg - kg™?
k(T) Temperature-dependent reaction rate constant h™!

E, Activation energy for microbial decarboxylation J - mol™*
X Input feature matrix for the CNN layer R™X™

w Convolutional filter kernel (learnable weights) RFxF
ft,it,0¢  LSTM gates: Forget, Input, and Output gates [0,1]

Cy, hy LSTM cell state and hidden state (internal memory) R4

© Hadamard (element-wise) product operator -

HRI Normalized Health Risk Index [0, c0)

2.2. Thermodynamic Modeling of Biogenic Amine Kinetics

The formation of histamine in scombroid species is a dynamic biochemical process driven by the microbial
decarboxylation of L-histidine. We formalize this using integrated kinetic models.

2.2.1 General Order Kinetic Formulation

The rate of histamine accumulation dC'/dt is modeled as a function of the remaining capacity for spoilage,
defined as follows:

ac

dt
where Ci,y represents the theoretical saturation point of histamine under tropical ambient conditions and
n denotes the reaction order, typically assumed as first-order (n = 1) for microbial kinetics in scombroid
fish [18]. This kinetic approach aligns with recent cold chain management improvements described by Qian
et al. [21], which emphasize the shift from static quality checks to dynamic, process-based monitoring.

k(T) - [Comax — C(1)]" 1)
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2.2.2 Arrhenius-Schoener Temperature Dependency

To map the influence of R404A storage fluctuations on microbial activity, the rate constant k(7") is governed
by the Arrhenius law [22]:
E
k(T)=A- __—e 2
(1) =4 (- ) @

where A is the pre-exponential frequency factor and R is the universal gas constant (8.314 J - mol~! - K—1).
This equation establishes the “Biological Benchmark” that our Al model seeks to approximate through deep
learning.

2.3. Deep Learning Foundations for High-Dimensional Time-Series

The proposed framework utilizes two distinct neural mechanisms to process the non-linear thermal noise of
artisanal fishing voyages. As highlighted in the comprehensive review by Ismail Fawaz et al. [23], deep learning
architectures demonstrate superior performance in classifying and forecasting multivariate time-series data
compared to traditional distance-based methods.

2.3.1 Convolutional Operators for Spatial Feature Denoising

Convolutional Neural Networks (CNN) are utilized to extract salient features from sudden thermal spikes. Let
X be the input matrix; the transformation to a feature map y; ; is defined by:

g = RelY (Z D Wi Titmjen b) 3)
m n

The ReLU activation function ensures that the model ignores negative-value noise, focusing only on significant
positive thermal gradients caused by hatch openings or refrigeration failure. This specific application of CNN
for noise reduction in logistics has been corroborated by recent studies in cold chain intelligence [17].

2.3.2 Long Short-Term Memory for Temporal Microbial Dependencies

To address the vanishing gradient problem in long-duration (120-hour) voyages, the LSTM unit maintains a
persistent cell state C;. The information flow is regulated by the following gating system:

fe=0(Wy - [h1,%] +by) (4)
it = 0(W; - [hy_1,%x¢] + b;) 5)
Cy = tanh(W¢ - [hy_1,x,] + be) (6)
Ci=f;0Cio1+i ©C, (7)
0 = (W - [hy—1,%x¢] + bo) 8)
ht = o ® tanh(Cy) )

Functionally, the forget gate f; determines which historical thermal events are discarded, while the update
in Eq. (7) enables the accumulation of “Long-Term Thermal Memory,” mimicking the cumulative nature of
histamine growth.

2.4. Problem Mapping: From Thermodynamics to Health Informatics

In the context of this study, the input vector x; directly represents the thermodynamic state of the R404A-PU
storage system (temperature, humidity, and door-status sensors). The hidden state h; is mapped to the
predicted histamine concentration Cyq, Which is finally transformed into the Health Risk Index (HRI):

HRI — C'pred

= (10)
C(threshold

where Cliyreshold 1S set at 50 mg - kg_l. While regulatory hazard limits are often higher (500 mg - kg_l), the
50mg - kg~' threshold aligns with the FDA and EFSA guidance for defect action levels and indicates the
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onset of decomposition [2, 13]. This mapping allows the framework to convert raw mechanical sensor data
into actionable clinical safety states (5), effectively bridging the gap between refrigeration engineering and
food safety informatics.

3. Methodology

3.1. Cascaded Spatio-Temporal Deep Inference Architecture

The proposed solution is formally conceptualized as a Cascaded Spatio-Temporal Deep Inference Architecture.
From a structural perspective, this framework is implemented as a rigorous “Three-Tier Informatics Pipeline”
that enables the systematic transformation of raw thermodynamic signal streams into quantifiable and
interpretable biological risk indicators. By tightly coupling Internet of Things (IoT) sensing modalities with
deep learning—based inference mechanisms, the system supports continuous, autonomous monitoring without
the need for human intervention. A schematic depiction of the data pathways and the interactions among the
constitutive components is presented in Figure 1.

TIER 1 I > TIER2 I » TIER3
DATA ACQUISITION & SPATIAL-TEMPORAL DECISION SUPPORT &
PREPROCESSING PROCESSING UNIT OUTPUT LAYER (TIER 3)
Data Pre-processing Input Sequence (X,)
Normalization &
Sliding Window

A
Raw Thermal Fata (102 Hz)

Dense Layer

(Regression)

PT100 Thermal Sensors &
Pressure Transducers
(Real-time T(t) & P(t) Data)

CNN Module
Spatial Denoising

Feature Map (75,)) Cpred

Hidden State

. J (ReLU Activation) b
HRI Calculation
T(t) Input Cpred
I Rl =g
I LSTM Module
xtracts spikes fio o
Optimized R404A nfiltration events Temli?[re?-:n]jr;wm HRI Value
Refrigerator System (Cy hy)

SAFE

HRI<0.5

Safety Logic

Thresholding (S) CAUTION

y
@ '
‘ i \Models Arrhenius
- cumulative effect
+ HRI> 1.0
Thermal Load : HAZARD
| '

Cold Storage Constraint:
Compartment <
(100mm PU Insulation)

Fish Catch

— -
a—

Figure 1. Schematic of the cascaded spatio-temporal deep inference architecture proposed.

The functional roles of each architectural tier are defined as follows:

» Tier 1: Data Acquisition Layer. This layer is responsible for the continuous ingestion of high-fidelity
thermal data 7 sampled at 10~2 Hz from the R404A-cooled Polyurethane (PU) storage. It serves as the
physical interface, converting analog environmental changes into digital time-series vectors.

« Tier 2: Spatial-Temporal Processing Unit. Acting as the computational core, this tier employs a
cascaded deep learning engine. The CNN module first functions as a “Feature Denoising Filter” to
isolate sudden spatial heat infiltration events (e.g., hatch openings), which are then fed into the LSTM
module to maintain a cumulative memory of spoilage kinetics over the voyage duration.
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+ Tier 3: Decision Support Logic. The final tier translates the model’s numerical predictions into
clinical safety semantics. It maps the predicted histamine concentration to FDA-aligned safety states
(S), providing the end-user with interpretable “Safe,” “Caution,” or “Hazard” alerts as defined in the

Preliminaries.

3.2. Stochastic Formulation of Histamine Risk under Thermal Constraints

We formulate the histamine prediction problem not merely as a regression task, but as a constraint-satisfaction
problem where the objective is to minimize the prediction error of biological degradation subject to thermo-
dynamic boundaries.

3.2.1 Problem Mapping and Decision Variables

Let X = {x1,X2,...,x7} denote the sequence of input state vectors, where each x; € R? contains the
temperature reading, door status, and time delta. The objective is to learn a mapping function fy : X — ),
where ) is the predicted histamine concentration.

The optimization objective function J(#) is defined as the minimization of the Mean Squared Error (MSE)
combined with an Lo regularization term to prevent overfitting on small datasets:

N
1
mean NZ: — i ( ) + All01I3 (11)

Clinical Interpretation: Minimizing the first term corresponds to aligning the AI prediction with the
actual microbial growth curve. The regularization term \||6||3 forces the model to ignore minor sensor noise
(“thermal jitter”), ensuring that alerts are only triggered by statistically significant temperature deviations
that impact food safety.

3.2.2 Safety Constraints and Feasible Region

To ensure strict adherence to international food safety standards, the optimization problem is confined within
a feasible operating region C, bounded by “hard” safety constraints. Unlike soft constraints that typically
penalize the loss function, these hard constraints serve as absolute thresholds for public health protection.
The system must strictly satisfy:

st P < Climie — € (12)

where Clipi; represents the regulatory threshold of 50 mg - kg ™! corresponding to the FDA Defect Action

Level. The parameter € denotes a safety buffer (set at 5% of Climit), introduced to account for aleatoric
uncertainty in sensor readings and model inference.

Functionally, this inequality acts as a "Fail-Safe Mechanism." If the predicted histamine level g, violates
this constraint, the Decision Support Logic (Tier 3) overrides all other optimization objectives and triggers a
“Critical Hazard” state, necessitating immediate intervention regardless of the refrigeration system’s current
thermodynamic efficiency.

3.2.3 Modeling Assumptions and Tractability

To ensure the mathematical tractability of the optimization framework and to bridge the gap between stochastic
real-world conditions and the proposed deterministic constraints, the following axioms are explicitly stated:

+ Assumption 1: Thermodynamic Quasi-Equilibrium. We assume that the temperature distribution
within the 100 mm PU insulation chamber approaches spatial homogeneity. This simplification is
justified by the high-velocity forced convection of the R404A unit, which minimizes thermal gradients
to negligible levels relative to the sensor resolution.

« Assumption 2: Baseline Biological Integrity. The initial histamine concentration at { = 0 (immediate
post-capture) is assumed to be zero (Cy ~ 0). This constraint posits that the fish are processed and
stored immediately upon catch, prior to the onset of enzymatic decarboxylation.
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« Assumption 3: Gaussian Stochasticity. Sensor noise and environmental micro-fluctuations are
assumed to follow an independent and identically distributed (i.i.d.) Gaussian distribution A/ (0, o'2).
This assumption aligns with the Maximum Likelihood Estimation (MLE) properties of the Mean Squared
Error (MSE) loss function employed in Eq. (1), ensuring unbiased model convergence.

3.3. Algorithmic Implementation and Inference Logic

To ensure technical reproducibility and clarify the run-time behavior of the system, the operational procedure
of the proposed Cascaded Spatio-Temporal architecture is formalized in Algorithm 1. This pseudocode
delineates the end-to-end inference cycle, spanning from sensor data acquisition, sliding window preprocessing,
to the final constraint-based risk classification.

Algorithm 1: Real-Time Histamine Risk Prediction (Inference Loop)
Input: Stream 7, Window Size W, Threshold Cly,;;, Weights Ocnn, frstv
Output: Risk State S € {Safe, Caution, Hazard}

1 Initialize buffer B « [], Safety Buffer ¢ < 0.05 - Climit

2 while System is Active do

3 x4 « ReadSensor(7)

4 x} + Normalize(zy) // Min-Max Scaling
5 B.append(z;})

6 if Length(B) > W then

7 | B.pop_front() // Maintain Sliding Window Size
8 end

9 if Length(B) == W then

// Phase 1: Cascaded Deep Inference

10 fmap < ReLU(Conv1D(B, fcnn))

11 Jpool < MaxPooling( fimap)

12 hy, e <= LSTM( fpool, Pe—1, Ct—1, Brstm)

13 Chred < Dense(hy)

// Phase 2: Hard Constraint Check (Fail-Safe)

14 if Cprea > (Climit — €) then

15 S < Hazardous // Override Logic
16 trigger Critical _Alarm()

17 end

18 else

// Phase 3: Standard HRI Mapping

19 HRI <+ Cpred/climit

20 if HRI > 0.5 then

21 ‘ S < Caution

22 end

23 else

24 ‘ S <« Safe

25 end

26 end

27 return S to Dashboard
28 end
29 Wait(SamplingRate)
30 end

3.4. Computational Complexity and Convergence Analysis

To validate the feasibility of deploying the proposed Cascaded Spatio-Temporal architecture on resource-
constrained edge devices (specifically low-power IoT nodes typical in artisanal vessels), this section rigorously
examines the algorithm’s asymptotic time-space complexity and theoretical convergence properties.
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3.4.1 Time and Space Complexity Analysis

To quantify the suitability of the proposed framework for deployment on resource-constrained edge devices,
we rigorously analyze the computational footprint. This analysis is grounded in the principles of Edge Al
efficiency as outlined by Merenda et al. [24], focusing on the trade-off between architectural depth and
operational latency.

The asymptotic complexity is derived based on the dominant matrix operations within the convolutional
and recurrent layers, following standard deep learning accounting [25]:

« Time Complexity (Deterministic Latency): The total inference time per time-step is the aggregate of
the spatial convolution and temporal recurrence, formally expressed as O(N - K - Cjy, - Cout) + O(N - H?).
Given that the sliding window size /N and hidden dimension H are fixed constants during the deployment
phase, the system exhibits deterministic latency (O(1)). Empirical benchmarking confirms an average
inference time of < 50 ms, ensuring strict adherence to real-time monitoring requirements.

+ Space Complexity (Memory Footprint): The storage requirement is proportional to the number of
learnable parameters, scaling as O(H? + H - Cy,). With the optimized model configuration (H = 64),
the total model footprint is compressed to < 2 MB. This compactness allows for efficient residence
within the on-chip memory (SRAM/DRAM) of standard Single Board Computers (SBCs), eliminating
the latency overhead associated with cloud offloading [24].

3.4.2 Convergence Guarantee

The optimization landscape of the objective function J () is inherently non-convex due to the non-linear
activation functions within the deep layers. However, the problem remains strictly convex with respect to
the final decision layer. To navigate this composite landscape, we employ the Adam optimizer, which
leverages adaptive moment estimation to stabilize the gradient descent trajectory against high-variance
thermal noise [26]. Furthermore, the integration of the Lo regularization term imposes a penalty on the
weight norms, effectively enforcing Lipschitz continuity on the loss surface. This condition restricts the rate
of change of the gradient, thereby bounding the parameter space and satisfying the theoretical prerequisites
for local convergence as delineated in fundamental statistical learning theory [25].

3.5. Experimental Setup and Implementation Details

To guarantee rigorous reproducibility and transparent benchmarking, the model training and validation were
executed within a controlled high-performance computing environment. While the proposed lightweight
architecture is designed for edge deployment, the initial parameter optimization (training phase) utilized GPU
acceleration to expedite convergence.

The detailed hardware specifications and software stack configurations are enumerated in Table 2.

Table 2. Experimental environment specifications for model training.

Category Specification
Hardware
Processor Intel Core i7-11800H @ 2.30GHz
GPU Accelerator  NVIDIA GeForce RTX 3060 (6GB VRAM)
Memory 16 GB DDR4 3200MHz
Software Stack
Framework Python 3.9, PyTorch 1.12, CUDA 11.3
Libraries Scikit-learn 1.0, NumPy 1.21, Pandas 1.3
Hyperparameters
Optimizer Adam (o = 0.001, 81 = 0.9, B2 = 0.999)
Batch Size 64
Loss Function Mean Squared Error (MSE)
Epochs 100 (with Early Stopping, patience=10)

To preserve the integrity of the temporal dependencies and prevent “look-ahead” bias, a common source
of data leakage in random shuffling, the dataset was partitioned using a strict chronological Time-Series
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Split strategy. Specifically, the first 70% of the time-ordered data constituted the training set, utilized to
optimize the spatial-temporal weights of the hybrid architecture. The subsequent 15% served as the validation
set for real-time hyperparameter tuning and monitoring the early stopping mechanism. The final 15% was
rigorously isolated as the testing set, kept completely unseen during the training phase to evaluate the model’s
generalization performance on future data points, as detailed in Section 4.

4. Results and Discussion

This section reports the empirical results obtained from the 120-hour in situ validation campaign, with
particular emphasis on the thermodynamic stability characteristics of the R404A refrigeration system and the
resultant predictive performance of the Hybrid LSTM-CNN-based health informatics framework.

4.1. Thermal Stability and System Performance

A stable thermal environment, which provides the reference condition or “ground truth” for predictive
modeling, is a fundamental prerequisite for robust health risk prediction within informatics frameworks. As
shown in Figure 2, the optimized R404A refrigeration system sustained a tightly controlled mean storage
temperature (Tgore) of —20.1°C with a low standard deviation of +0.5°C. This level of thermal stability
was maintained despite exposure to a high tropical ambient temperature (Zyy,,) characterized by diurnal
fluctuations with a mean of 31.4°C.

40
Logend

30 = = = Ambient Temperature (Tamb)
= Storage Temperature (Tstore)

Tenpeeratue (°C)

-30 T T T T T T )
0 2 40 40 60 80 90 120
Time (Hours)

Figure 2. Thermal stability profile showing the correlation between ambient oscillations (T,mp) and storage stability
(Ttore) OVer the 120-hour voyage.

The elevated thermal inertia observed in the system arises from the synergistic interaction between the
high volumetric cooling capacity of R404A and the conductive resistance provided by the 100 mm polyurethane
(PU) insulation layer. In contrast to conventional ice-based cooling systems, which typically experience
latent heat exhaustion and subsequent “thermal slip” (i.e., T' > 0°C) after approximately 48 hours [5, 7], the
proposed configuration effectively attenuated the influence of transient ambient heat loads. The sustained
temperature gradient (AT ~ 51.5°C) is a particularly significant outcome, as it demonstrates the system’s
capability to preserve sub-zero internal conditions even under peak solar irradiance.

The partitioning of the cooling load (summarized in Table 3) yields important insights into the system’s
thermodynamic performance. The product load (Qproq) constituted the dominant share of the total energy
demand (42.9%), whereas the transmission load through the enclosure walls (Qy.n) was limited to 36.5%.
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Table 3. Distribution of Cooling Load Components.

Load Component Symbol Percentage (%)
Product Respiration & Cooling Qprod 429
Transmission (Walls/Roof) Qwal 36.5
Infiltration (Air Exchange) Qinf 12.0
Others (Machinery/Misc) Qmise 8.6

The relatively low transmission percentage empirically supports the selection of a 100 mm polyurethane
(PU) insulation density for operation in tropical climates. Nonetheless, the infiltration load (Qinf), quantified
at 12.0%, reveals a distinct operational vulnerability associated with heat ingress during hatch-opening events.
From a health informatics standpoint, these infiltration episodes can be conceptualized as “stochastic noise”
superimposed on the otherwise structured thermal signal.

The resulting thermodynamic stability generates a “clean” input signal characterized by a high signal-
to-noise ratio (SNR) for the downstream CNN-LSTM architecture. By minimizing the storage temperature
variance (0'2), the system ensures that the feature space presented to the AI model is predominantly governed
by deterministic cooling dynamics rather than by exogenous, chaotic environmental perturbations. As a
consequence, the Hybrid LSTM-CNN can allocate its representational capacity to learning fine-grained
temporal dependencies in microbial growth and inactivation kinetics, instead of expending capacity to correct
for large thermal excursions. This tight coupling between hardware-level optimization and data quality
enhancement constitutes the foundation for generating high-precision safety alerts, thereby supporting
proactive, preventive public health interventions.

4.2. Predictive Accuracy of the Hybrid LSTM-CNN Model

The central functionality of the health informatics layer lies in its ability to convert high-dimensional thermal
time-series data into operationally relevant safety forecasts. The predictive performance of the proposed
Hybrid LSTM-CNN architecture was systematically evaluated against two baseline models—Linear Regression
(LR) and a conventional Recurrent Neural Network (RNN). The comparative performance indices, computed
over the complete 120-hour operational horizon, are reported in Table 4.

Table 4. Comparative predictive performance metrics for 24-hour temperature forecasting.

Model MAE (°C) RMSE (°C) R? Score
Linear Regression 1.42 1.85 0.76
Standard RNN 0.88 1.12 0.89
Proposed Hybrid LSTM-CNN 0.32 0.45 0.97

As demonstrated by the quantitative results reported in Table 4, the hybrid architecture yields a substantial
enhancement in forecasting accuracy. To further elucidate these performance differentials, Figure 3 depicts
the error distributions associated with the three models.
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Error Value (°C)

Linear Regression Standard RNN Proposed Hybrid
LSTM-CNN

Figure 3. Comparison of MAE and RMSE across the evaluated models, highlighting the precision of the proposed Hybrid
LSTM-CNN.

The proposed hybrid LS TM—-CNN architecture substantially outperformed all baseline models, achieving a
Mean Absolute Error (MAE) of 0.32°C and a Coefficient of Determination (R?) of 0.97. The elevated R? value
indicates that the model accounts for approximately 97% of the variance observed in the storage temperature

profile.

In contrast, the Linear Regression (LR) model, as a shallow learner, was unable to adequately represent
the intrinsic non-linear thermal fluctuations associated with stochastic door-opening events, resulting in the
highest Root Mean Squared Error (RMSE) of 1.85°C. Although the standard RNN yielded an improvement
over the LR model, it continued to exhibit pronounced “prediction lag” during rapid temperature transitions,
which is reflected in its comparatively lower R? value of 0.89.

The enhanced predictive performance of the hybrid architecture is attributable to the synergistic integra-
tion of convolutional and recurrent components (illustrated in Figure ??). Specifically, the CNN subnetwork
functions as a local feature extractor that effectively attenuates measurement noise in the raw thermal signal
by isolating short-term volatility associated with rapid heat infiltration (Qinr). The resulting denoised and
compressed feature representation is subsequently provided as input to the LSTM layer, which employs its
gating mechanisms to capture long-range temporal dependencies while mitigating the vanishing gradient
issues commonly encountered in conventional RNNs. This behavior is consistent with recent work by [17]
and [16], who reported that convolutional front-ends substantially reduce sensor noise in logistics-related
time-series data relative to pure sequence models. By preserving salient historical information while filtering
out transient operational perturbations, the proposed framework effectively disentangles high-frequency
noise from underlying thermal dynamics, thereby enabling high-fidelity risk forecasting.

From a health informatics standpoint, maintaining a prediction error of only 0.32°C is of critical impor-
tance. Within the context of microbial kinetics, as described by the Arrhenius relationship in Eq. (2), even a
temperature deviation on the order of 1°C can induce an exponential increase in the histamine formation
rate (k). As shown in Figure 4, this level of predictive precision is sufficient to avert the “Safety Threshold
Breach” that is frequently observed in less accurate models.
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Figure 4. Impact of temperature prediction accuracy on histamine formation estimation. The proposed model prevents
false safety assurances.
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Figure 5. Histamine accumulation projection: Proposed R404A-AI System (Blue) vs. Conventional Ice Storage (Red
dashed). The shaded area represents the preventative safety margin achieved by the Al framework.

The high predictive accuracy of this hybrid model enhances the reliability of the Early Warning System
(EWS) by reducing false negatives that could result in the distribution of toxic fish, while simultaneously
limiting false positives that would otherwise lead to unwarranted economic losses through the rejection of
safe catch.

4.3. Histamine Risk Mitigation and Health Informatics Mapping

The definitive validation of the proposed framework resides in its biological fidelity. Using the HKI Algo-
rithm, model-predicted histamine accumulation was systematically compared with daily QIM organoleptic
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scores. Statistical analysis demonstrated a robust positive correlation between Al-predicted chemical risk and
empirically observed sensory degradation (Pearson’s p = 0.94, p < 0.01), thereby corroborating the model’s
sensitivity to real-world spoilage dynamics.

As illustrated in Figure 5, the proposed R404A-Al system effectively attenuated microbial growth kinetics,
maintaining histamine concentrations below 15 mg/kg throughout the 5-day voyage—substantially lower
than the stringent FDA/EFSA regulatory threshold of 50 mg/kg.

By contrast, the simulation of conventional ice-based refrigeration predicts a critical exceedance of this
safety limit at approximately 68 hours. This exceedance is attributable to “thermal slip” (1" > 0°C), which
initiates the exponential growth phase of histamine-producing microorganisms (e.g., Morganella morganii),
thereby driving the catch into the “Hazardous Zone” well before the vessel returns to port [1, 18].

To enable a quantitative comparison of the safety improvements, Table 5 presents the key biological
performance indicators for the conventional refrigeration strategy versus the proposed Al-driven framework.

Table 5. Comparative Analysis of Biological Safety Metrics: Conventional Ice Storage vs. Proposed R404A-AI Framework.

Safety Metric Conventional Ice Proposed R404A-AI Safety Gain
Peak Histamine (120h) > 60 mg/kg 14.2 mg/kg J 76% (Risk Reduction)
Safety Limit Breach (50 mg/kg) At Hour 68 None (Safe) Extended > 52 Hours
Mean Storage Temp (Tstore) +1.5°C (Fluctuating) —20.1°C (Stable) Kinetic Arrest
Risk State (S) Hazardous (S = 0) Safe (S = 1) Certified Safe

The HRI mapping procedure consistently produced a system state of S = 1 (Safe) for the proposed
architecture. This outcome indicates that the framework operates not merely as a passive monitoring
mechanism but as a Predictive Certification Tool. By maintaining a verifiable digital record demonstrating that
the thermal history never exceeded the kinetic activation energy (E,) associated with rapid spoilage, the
system provides quantitatively grounded assurance to support supply chain traceability [15].

4.4. Ablation Study: The Role of AI in Health Safety

To rigorously assess the contribution of the hybrid architecture, an ablation study was performed by removing
the CNN component and evaluating a standalone LSTM-based model. The quantitative consequences of this
architectural alteration are depicted in Figure 6, which compares the error evolution of both configurations
across critical operational intervals.

1.0
High-Variance Thermal Events = Hybrid LSTM-CNN (Proposed)
(e.g., Hatch Opening) ~~~ Standalone LSTM (No CNN)
0.8 " / \ \ |
5} ) n 1
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Figure 6. Impact of architectural ablation on predictive fidelity. The standalone LSTM (Orange, dashed) exhibits severe
error spikes during high-variance events, whereas the proposed Hybrid LSTM-CNN (Blue, solid) effectively filters these
transient noises through spatial convolution.

As hypothesized, removal of the convolutional layer resulted in a marked degradation of predictive
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performance, with the global Mean Absolute Error (MAE) increasing by approximately 25% (from 0.32°C to
0.40°C). However, this aggregate metric masks critical localized instabilities. As illustrated in Figure 6, the
prediction error exhibits pronounced temporal heterogeneity: the standalone LSTM displays substantial error
spikes (exceeding 0.8°C) specifically during episodes of elevated infiltration flow (Qinf), such as hatch-opening
events.

In the absence of the spatial feature extraction capabilities provided by the CNN, the model is unable to re-
liably discriminate between short-lived thermal perturbations (operational noise) and genuine cooling-system
failures (systemic risk). From a health informatics standpoint, this instability is problematic. The absence of
effective, data-driven denoising introduces high-variance temperature trajectories into the Arrhenius module,
thereby increasing the likelihood of false-positive outcomes in histamine risk estimation. These findings
demonstrate that the hybrid architecture is not merely an added computational burden, but a functional
requirement to ensure robust, safety-critical decision support in the highly variable operating conditions
characteristic of artisanal fisheries.

To integrate the multi-dimensional validation of the proposed framework, Table 6 consolidates the key
performance indicators across thermodynamic, computational, and biological dimensions, thereby supporting
the system’s suitability for real-world deployment.

Table 6. Holistic performance validation matrix of the Health Informatics Framework.

Validation Domain Key Indicator Measured Value Baseline/Ref. Performance Outcome
Thermodynamic Thermal Stability (o) +0.5°C Ice-based (£5 °C) Superior Stability
Computational Model Fidelity (R?) 0.97 Standard RNN (0.89)  High Precision
Biological Sensory Correlation (p) 0.94 Significance p < 0.01  Strong Validity

Food Safety Safety Margin Extension +52 Hours FDA Limit (50 mg/kg) Regulatory Compliant

The data presented in Table 6 delineate a critical causal pathway in which thermodynamic control with
high fidelity (o 4- 0.5°C) functions as the primary enabling factor for computational accuracy (R? = 0.97),
which subsequently underpins the biological safety of the catch. In contrast to fragmented methodologies
commonly reported in the literature [5, 8], where refrigeration and monitoring are addressed as independent
components, the present framework empirically demonstrates that tight cyber-physical integration is essential
for shelf-life extension. The extension of the safety margin by more than 52 hours is not merely an operational
contingencys; it constitutes a substantive transition from probabilistic preservation strategies, frequently
criticized for pronounced thermal variability [7], to a precision-based certification paradigm, in which Al-
driven analytics are employed to assure regulatory and safety compliance. Accordingly, the proposed system
establishes a closed-loop architecture linking mechanical engineering and public health, and provides a
scalable, systems-level intervention for mitigating the incidence of scombroid poisoning within tropical
cold-chain logistics.

4.5. Statistical Significance Validation

To ensure that the observed performance gains are not merely artifacts of stochastic variance, model superiority
was rigorously validated using non-parametric hypothesis testing on paired error samples. Given that the
error distributions violated the normality assumption (Shapiro-Wilk p < 0.05), the Wilcoxon Signed-Rank
Test was employed for pairwise comparisons, while the Friedman Test was utilized for global multi-model
assessment.

The statistical testing results, summarized in Table 7, provide robust evidence against the null hypothesis
(Hg). The comparison between the proposed Hybrid LSTM-CNN and the Linear Regression baseline yielded a
p-value of 2.1 x 1074, indicating a highly significant performance divergence. Similarly, the hybrid model
outperformed the Standard RNN with statistical significance (p = 0.032), albeit with a narrower margin,
reflecting the partial capability of RNNs to capture temporal dependencies.
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Table 7. Non-parametric statistical significance testing results (a = 0.05).

Hypothesis Test Model Pair / Group p-value Conclusion

Hybrid vs. Linear Regression 2.1 x 10™*  Significant (Ho Rejected)
Hybrid vs. Standard RNN 0.032 Significant (Hy Rejected)

Friedman Test All Models (Global) 0.0012 Significant (Ho Rejected)

Wilcoxon Signed-Rank

The global Friedman test confirmed distinct performance tiers among the evaluated architectures (p <
0.01). Collectively, these statistics validate that the Hybrid LSTM-CNN offers a fundamental algorithmic
advantage in modeling the complex thermo-kinetic dynamics of artisanal fisheries, rather than a marginal
improvement attributable to chance.

4.6. Diagnostic Performance and Clinical Utility Assessment

In safety-critical health informatics, standard accuracy metrics are often misleading due to the severe asym-
metry in error costs, a False Negative (missed hazard) carries public health liabilities, whereas a False Positive
(false alarm) incurs economic waste. Therefore, the decision support capability was rigorously evaluated
using a multi-metric diagnostic suite derived from the confusion matrix. Specifically, we computed Sensitivity
(Recall) to measure the system’s ability to detect toxic events, and Specificity to assess its robustness against
false alarms.

To enable this analysis, the continuous regression output was mapped into categorical risk states (Safe vs.
Hazard) using the FDA-aligned threshold (50 mg/kg). The quantitative classification performance is detailed
in Table 8.

Table 8. Diagnostic performance metrics for Histamine Hazard Detection (C' > 50 mg/kg).

Model Precision Recall (Sensitivity) Specificity F1-Score AUC-ROC
Linear Regression 0.72 0.65 0.81 0.68 0.74
Standard RNN 0.85 0.82 0.88 0.83 0.89
Proposed Hybrid 0.96 0.98 0.99 0.97 0.99

The results reveal a critical operational disparity among the models. The Linear Regression baseline exhib-
ited a Recall of only 0.65, implying a **35% failure rate* in detecting hazardous histamine accumulation—an
unacceptable risk profile for food safety applications. While the Standard RNN improved detection capability
(Recall 0.82), it still exhibited moderate Specificity (0.88), suggesting a propensity for false alarms that could
disrupt supply chain logistics.

In contrast, the Proposed Hybrid LSTM-CNN achieved a near-perfect Recall of 0.98 and Specificity of 0.99.
From a health informatics perspective, this signifies a "High-Confidence" system: it effectively eliminates the
risk of scombroid poisoning (by catching 98% of hazards) while simultaneously maximizing economic yield
by validating safe catch with 99% certainty. The exceptionally high AUC-ROC (0.99) further confirms that the
model maintains this robust separability across varying decision thresholds, making it suitable for automated
certification in artisanal fisheries.

5. Conclusion

This study aimed to resolve the critical technical disconnect between mechanical refrigeration stability and
real-time biological risk assessment in tropical artisanal fisheries. By proposing a Cascaded Spatio-Temporal
Deep Inference Architecture integrated with an optimized R404A cooling system, we sought to replace
reactive, probabilistic monitoring with a precise, data-driven framework capable of operating under extreme
ambient thermal stress.

The experimental results demonstrated that the proposed hybrid system successfully maintained a strict
storage temperature of —20.1+0.5 °C, effectively neutralizing the microbial kinetics responsible for histamine
formation. The Hybrid LSTM-CNN model achieved superior predictive fidelity with an R? of 0.97 and an
MAE of 0.32 °C, significantly outperforming the Linear Regression baseline (RMSE = 1.85 °C). Consequently,
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the system extended the prime-quality shelf-life by over 52 hours, maintaining histamine concentrations well
below the regulatory safety limit of 50 mg/kg.

The theoretical and practical implications of these findings are substantial. Theoretically, this work
validates that thermodynamic stability is a prerequisite for high-fidelity Al inference in cold chain logistics.
Practically, the transition to deterministic, predictive certification empowers small-scale fishers to bypass
traditional quality barriers, facilitating access to premium export markets. The formulated Health Risk Index
(HRI) serves as a verifiable digital ledger, providing policy-makers with a scalable blueprint to modernize
fishery logistics in alignment with global food security mandates.

Despite its robust performance, this study acknowledges certain limitations. The field validation was
conducted on a single 10 GT vessel targeting specifically scombroid species (Katsuwonus pelamis) within a
specific tropical maritime zone. Therefore, the generalizability of the "Thermal Inertia" model to different
vessel classes or alternative refrigeration refrigerants (e.g., ammonia or C'Oz) remains to be empirically
verified. Furthermore, the current kinetic model focuses exclusively on histamine and does not account for
other spoilage indicators such as Total Volatile Basic Nitrogen (TVB-N).

Future research will address these boundaries by expanding the dataset to include multi-species catch
records and diverse vessel tonnages. Technical efforts will prioritize the quantization of the algorithmic
pipeline to facilitate lightweight deployment on edge-computing platforms (e.g., microcontroller-based
embedded systems), enabling fully offline inference in remote offshore zones. Additionally, expanding the
kinetic framework to encompass a broader spectrum of biogenic amines, such as putrescine and cadaverine,
will further enhance the system’s diagnostic granularity, paving the way for a comprehensive, multi-analyte
seafood safety ecosystem.
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