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ABSTRACT

The rapid expansion of multimodal digital content necessitates the development of robust information retrieval

systems capable of bridging the semantic gap between visual and textual data. However, contemporary cross-

modal models, such as CLIP, impose significant computational demands, rendering them impractical for real-time

deployment in resource-limited environments. To address this efficiency challenge, this study introduces a novel

lightweight retrieval pipeline that reconceptualizes cross-modal retrieval as a text-to-text task through generative

transformation. The proposed methodology employs the Bootstrapped Language-Image Pretraining (BLIP) model

to distill visual features into rich textual descriptions, which are subsequently encoded into dense semantic

vectors using the T5 transformer architecture. Extensive experiments conducted on the MSCOCO and Flickr30K

datasets demonstrate that the proposed pipeline achieves a Semantic Average Recall (SAR@5) of 0.561, significantly

surpassing traditional lexical (BM25) and dense (SBERT) baselines. Notably, while the computationally intensive

CLIP model retains a slight advantage in absolute accuracy, our approach delivers approximately 90% of CLIP’s

semantic performance while enhancing inference throughput by 2.1× and reducing GPU memory consumption

by 62%. These findings confirm that generative semantic distillation offers a scalable, cost-effective alternative to

end-to-end multimodal systems, particularly for latency-sensitive applications requiring high semantic fidelity.

KEYWORDS
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1. Introduction

Recent advancements in deep learning have significantly transformed information retrieval through the

development of vision-language models that learn aligned semantic representations. Foundation models such

as Contrastive Language-Image Pretraining (CLIP) and ALIGN have exhibited exceptional capabilities in
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mapping images and text into a unified embedding space [1, 2]. These models utilize large-scale contrastive

learning on extensive datasets to achieve state-of-the-art performance in zero-shot retrieval tasks. However,

the impressive accuracy of these dual-encoder architectures is accompanied by a considerable computational

cost. The necessity to process high-dimensional visual features during both the indexing and retrieval stages

results in a substantial memory footprint and inference latency [3]. This computational overhead renders such

large-scale multimodal models impractical for real-time deployment in resource-constrained environments or

on edge devices with limited graphical processing unit capacity.

Despite the pressing need for efficiency, existing lightweight alternatives often compromise semantic

fidelity. Traditional lexical matching methods like BM25 are highly efficient but suffer from the lexical

gap problem, where they fail to capture the conceptual meaning behind a query if there is no exact word

overlap [4]. Conversely, purely vector-based text retrieval models such as Sentence-BERT (SBERT) provide

dense semantic representations but require textual inputs, leaving the challenge of converting visual data

into compatible text formats unresolved [5]. While recent studies have explored model compression and

quantization to reduce the size of large vision-language models, these approaches often result in performance

degradation and do not fundamentally alter the expensive visual processing pipeline. There remains a critical

research gap in developing a retrieval framework that can harness the semantic power of large foundation

models while maintaining the speed and low resource requirements of text-based systems [6, 7].

To address the identified efficiency bottleneck, this study introduces an innovative resource-efficient

retrieval pipeline that reconceptualizes cross-modal retrieval as a text-to-text task through generative trans-

formation. We propose a two-stage distillation framework that utilizes the generative capabilities of the

Bootstrapped Language-Image Pretraining (BLIP) model to convert visual data into detailed textual captions

[3]. By transforming images into a semantic text format, we effectively eliminate the necessity for heavy

visual encoders during the retrieval phase. These generated captions are subsequently encoded using the

T5 transformer architecture, which we hypothesize captures deeper semantic relationships than standard

BERT-based models due to its unified text-to-text training objective [8]. This approach effectively distills the

visual understanding of a large multimodal model into a lightweight text retrieval format.

The primary contribution of this research is the development and evaluation of a high-performance yet

computationally efficient retrieval pipeline. We systematically assess the proposed framework on two bench-

mark datasets, MSCOCO and Flickr30K, comparing it against both lexical baselines and semantic embeddings

[9, 10]. Unlike previous studies that rely solely on Recall metrics [11], we incorporate a comprehensive

evaluation strategy using Semantic Average Recall (SAR) and Semantic Mean Average Precision (mAP) to

rigorously assess conceptual alignment. Our experimental results demonstrate that the proposed BLIP+T5

pipeline retains the vast majority of the semantic accuracy found in heavy multimodal models while offering

a significant reduction in inference latency and memory usage. This study provides empirical evidence that

generative captioning combined with advanced text encoders offers a scalable solution for next-generation

information retrieval systems in latency-sensitive applications.

2. Preliminaries

In this section, we provide a formal definition of the cross-modal retrieval problem and examine the founda-

tional principles of the generative models and transformer architectures utilized in our proposed pipeline.

2.1. Problem Formulation

Let I represent a high-dimensional space of visual data or images, and let T denote the corresponding

semantic space of textual data. We consider a dataset D = {(vi, ti)}Ni=1, where vi ∈ I signifies an image and

ti ∈ T denotes its ground truth textual description or caption.

The aim of traditional cross-modal retrieval is to develop two mapping functions, ϕv : I → Rd
and

ϕt : T → Rd
, such that the similarity between relevant image-text pairs is maximized within a shared

d-dimensional embedding space [1, 12].

In our proposed resource-efficient pipeline, we reconceptualize this objective by introducing a generative

transformation function G : I → T . Rather than mapping images directly to embeddings, we map images to

their textual approximations. Consequently, the retrieval task is transformed into a text-to-text matching

problem. Given a textual query q ∈ T , the objective is to retrieve the most pertinent images by ranking

the similarity between the query embedding and the embeddings of the generated captions. This can be

formalized as identifying an optimal ranking function R as expressed in Eq. (1).
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R(q,D) = argsort
vi∈D

sim(ψ(q), ψ(G(vi))) (1)

where ψ represents a text encoder function and sim(·, ·) denotes a similarity metric, typically cosine similarity.

2.2. Generative Captioning with BLIP

To implement the transformation function G, we employ the Bootstrapped Language-Image Pretraining

(BLIP) model [3]. BLIP utilizes a multimodal mixture of encoder-decoder architecture. For the captioning

task, it optimizes a Language Modeling (LM) loss. Given an input image v, the model generates a sequence of

text tokens y = {y1, y2, . . . , yL} by maximizing the likelihood of each token conditioned on the image and

previous tokens, as shown in Eq. (2).

LLM = −
L∑

j=1

logP (yj | v, y<j ; θ) (2)

where θ denotes the trainable parameters of the model. This autoregressive formulation enables the model to

distill complex visual features into coherent semantic text descriptions, which serve as the bridge for our

retrieval pipeline.

2.3. Semantic Text Encoding

For the encoding function ψ, we utilize transformer-based architectures such as T5 [8] and SBERT [5]. In

contrast to traditional lexical models that depend on sparse vector representations, these models transform

text into dense vectors, thereby preserving semantic proximity.

Consider S as a sentence or caption. The transformer encoder processes S as a sequence of tokens

and produces a contextualized vector representation h ∈ Rd
. For T5, which operates within a text-to-text

framework, the semantic representation is obtained from the encoder’s output. The semantic similarity

between a query vector u = ψ(q) and a document vector v = ψ(d) is calculated using the cosine similarity

formula as shown in Eq. (3)

sim(u,v) =
u · v
∥u∥∥v∥

(3)

This metric ranges from −1 to 1, where a score closer to 1 signifies a high degree of semantic alignment

between the query and the retrieved content.

3. Methodology

This study introduces a comprehensive pipeline aimed at bridging the modality gap between visual data and

textual queries through a process of semantic distillation.

3.1. Proposed System Architecture

The proposed pipeline is based on a two-stage distillation principle. In contrast to end-to-end cross-modal

networks, which necessitate the concurrent loading of substantial vision and language backbones, our approach

separates visual understanding from the retrieval process. The comprehensive workflow is illustrated in

Figure 1.
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Figure 1. The proposed Resource-Efficient Semantic Retrieval Pipeline. The workflow is divided into (A) The Offline
Indexing Phase, where BLIP distills visual information into text descriptions, and (B) The Online Retrieval Phase, which

executes text-to-text retrieval using our proposed T5 encoder, alongside SBERT and BM25 baselines for comparative

evaluation.

In the initial stage, referred to as the Offline Indexing Phase, the visual dataset undergoes processing by the

BLIP model. BLIP functions as a modal interface, converting raw pixel data into natural language descriptions.

This process effectively compresses the high-dimensional visual information into a dense semantic textual

format.

In the subsequent stage, known as the Online Retrieval Phase, the generated captions and incoming user

queries are processed entirely within the textual domain. While our primary proposed approach employs

the T5 transformer encoder for robust semantic mapping, our architecture facilitates a direct comparative

analysis against other text-based baselines, specifically SBERT (dense retrieval) and BM25 (sparse retrieval),

as depicted in Figure 1. This architecture enables the retrieval system to operate exclusively within the textual

domain, thereby significantly reducing the computational resources required during inference time.

3.2. Algorithmic Procedure

We formalize the generalized retrieval procedure in Algorithm 1. The process begins with the indexing phase,

during which each image vi in the database D is converted into a descriptive caption ci. These captions are

then transformed into a retrieval-compatible representation ei. Upon receiving a query q, the system employs

an identical encoding mechanism to ensure alignment within the search space, followed by similarity-based

ranking.

It is noteworthy that the function Text_Encoder in Algorithm 1 serves as an abstraction of the encoding

scheme. In our proposed framework, this is instantiated as the T5 transformer to generate dense semantic

embeddings. For comparative analysis, this module is replaced with SBERT (for dense baselines) or a BM25

scoring function (for sparse lexical baselines), ensuring a fair evaluation across different retrieval paradigms.
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Algorithm 1: Generative Semantic Retrieval Pipeline

Input: Image Dataset D = {v1, v2, . . . , vN}, Query q, Top-k parameter K
Output: Set of relevant imagesR
// Phase 1: Offline Indexing

1 foreach vi ∈ D do
2 ci ← BLIP_Generate(vi) // Generate caption
3 ei ← Text_Encoder(ci) // Compute embedding
4 Store pair (vi, ei) in IndexM
5 end
// Phase 2: Online Retrieval

6 u← Text_Encoder(q) // Encode user query
7 Scores← ∅
8 foreach ei ∈M do

// Compute Cosine Similarity
9 si ← u·ei

∥u∥∥ei∥
10 Scores← Scores ∪ {(i, si)}
11 end
12 Sort Scores in descending order based on similarity

13 R ← {vi | (i, si) ∈ Scores[1 : K]}
14 returnR

3.3. Computational Complexity Analysis

A notable contribution of this study is the reduction in computational overhead. We perform an analysis of

the time complexity of our proposed method in comparison to a standard dual-encoder cross-modal model,

such as CLIP.

Let N represent the number of images in the database. Let Tvis denote the inference time of a Vision

Transformer (ViT) encoder, and let Ttxt denote the inference time of a Text Transformer encoder. Typically,

Tvis ≫ Ttxt due to the quadratic complexity of attention mechanisms over high-resolution image patches. A

comparative summary of the complexity analysis is provided in Table 1.

Table 1. Computational complexity comparison: Standard Cross-Modal (CLIP) vs. Proposed Pipeline.

Metric Standard Cross-Modal (CLIP) Proposed Pipeline (BLIP + T5)

Indexing Complexity O(N · Tvis) O(N · (T *
gen

+ Ttxt))
Online Retrieval Complexity O(Tvis +N · d) O(Ttxt +N · d)
Online Memory Requirement High (Vision + Text Backbone) Low (Text Backbone Only)
Dependency on Visual Encoder Required Online Offline Only
* Tgen represents the one-time offline cost of caption generation.

In our proposed pipeline, the indexing complexity is denoted asO(N ·(Tgen+Ttxt)), where Tgen represents

the time required for caption generation. Although Tgen is a significant factor, it constitutes a one-time offline

cost. The primary advantage is evident during the deployment phase. As the database has already been

converted into text embeddings, the system does not necessitate the vision encoder to be maintained in active

memory. Consequently, the retrieval complexity is contingent solely upon the text encoder and the vector

search mechanism, as described in Eq. (4).

Cproposed ≈ O(Ttxt) +O(N · d) (4)

This constitutes a substantial reduction in online latency and memory usage, as the extensive parameters

of the vision backbone are not necessary during the search operation.
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3.4. Experimental Reproducibility

To ensure the reproducibility of our findings, we provide a detailed account of the implementation environment

and hyperparameter configurations in Table 2. The experiments were conducted on a workstation equipped

with an NVIDIA GPU featuring 24 GB of VRAM.

Table 2. Implementation details and hyperparameters.

Component Specification / Setting

Captioning Model blip-image-captioning-base
Generation Params Beam Size = 5, Min Length = 20 tokens

Embedding Model (Proposed) t5-base (Fine-tuned)

Baseline Models paraphrase-mpnet-base-v2 (SBERT), BM25

Dataset Splits MSCOCO (5k test), Flickr30K (1k test)

Framework PyTorch 1.12, Hugging Face Transformers

4. Results and Discussion

In this section, we conduct a comprehensive evaluation of the proposed retrieval pipeline. Our analysis

encompasses three critical dimensions: (1) the accuracy of semantic versus lexical retrieval, (2) computational

efficiency in terms of latency and memory usage, and (3) a qualitative assessment of the embedding space.

4.1. Comparative Retrieval Performance

We initially assess the retrieval effectiveness of our proposed text-to-text semantic encoder (T5) in comparison

to the lexical baseline (BM25) and the dense embedding baseline (SBERT). The results, averaged over three

independent runs on the MSCOCO and Flickr30K test sets, are presented in Table 3.

Table 3. Performance comparison of retrieval models across lexical and semantic metrics.

Model Recall@5 mAP SAR@5 Semantic mAP

BM25 (Baseline) 0.632 0.479 0.312 0.287

SBERT (Dense Baseline) 0.604 0.495 0.524 0.487

T5 (Proposed) 0.591 0.481 0.561 0.524

The data indicates a clear dichotomy between lexical and semantic performance. As expected, the lexical

baseline (BM25) achieves the highest traditional Recall@5 score (0.632), attributed to its exact keyword

matching mechanism, which performs optimally when the generated captions contain terms identical to

the query. However, its performance significantly declines in semantic-aware metrics (SAR@5: 0.312),

highlighting its inability to retrieve conceptually relevant items that lack lexical overlap—a phenomenon

traditionally referred to as the "lexical gap" [13–15].

In contrast, the transformer-based models (SBERT and T5) exhibit superior capability in capturing semantic

intent. Notably, our proposed T5-based encoder achieves the highest Semantic Average Recall (SAR@5: 0.561)

and Semantic mAP (0.524), surpassing SBERT by approximately 7% and 7.6%, respectively. This suggests that

the generative pre-training objective of T5 facilitates a richer contextual understanding of the distilled captions

compared to the discriminative sentence-embedding objective of SBERT. While T5 demonstrates a slightly

lower traditional recall than BM25, the substantial improvement in semantic metrics aligns more closely with

the user’s intent in cross-modal search scenarios, where conceptual relevance often takes precedence over

exact keyword matching.

4.2. Efficiency Trade-off Analysis

The primary aim of this study is to propose a resource-efficient alternative to large-scale multimodal models.

To substantiate this claim, we conducted a comparative analysis of the inference latency and GPU memory

consumption of our pipeline against the state-of-the-art CLIP model, utilizing a controlled subset of 1,000

queries.
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Table 4. Efficiency Analysis: Accuracy vs. Resource Consumption.

Model Pipeline Accuracy (SAR@5) Latency (ms/query) GPU Memory (GB)

CLIP (ViT-B/32) 0.620 420 8.2

BLIP + SBERT 0.540 180 2.7
BLIP + T5 (Proposed) 0.561 210 3.1

Table 4 illustrates the significant trade-off involved. While CLIP demonstrates superior absolute semantic

accuracy (SAR@5: 0.620), specifically 8.2 GB of VRAM and a latency of 420 ms. This aligns with recent studies

highlighting the prohibitive scaling costs of foundational vision-encoders in latency-critical applications

[16, 17]. Conversely, the proposed BLIP+T5 pipeline achieves a 50% reduction in inference latency (210 ms)

and decreases memory usage by approximately 62% (3.1 GB), while maintaining nearly 90% of CLIP’s semantic

performance.

These findings suggest that the proposed framework is a highly feasible solution for edge computing or

real-time web applications, where deploying a full-scale Vision Transformer is impractical. The minor latency

increase of T5 compared to SBERT (30 ms) is a negligible trade-off for the observed enhancement in semantic

accuracy.

4.3. Qualitative Analysis and Interpretation

To advance beyond aggregate metrics, we examined the topological structure of the learned embedding space

and specific retrieval instances to validate the semantic coherence of our model.

Initially, we utilized t-Distributed Stochastic Neighbor Embedding (t-SNE) [18] to project the high-

dimensional caption embeddings into a two-dimensional plane (Figure 2). The visualization demonstrates

that the T5 encoder generates highly compact and well-separated clusters for semantically distinct categories

(e.g., "animals," "vehicles," "indoor scenes"). In contrast, baselines lacking deep semantic understanding display

scattered distributions with significant overlap between unrelated categories. This topological coherence

quantitatively supports the higher Semantic mAP scores reported in Table 3, indicating that T5 effectively

maps semantically related captions to proximal regions in the vector space.

Figure 2. Manifold visualization of the embedding space. T5 forms compact, well-separated semantic clusters compared

to scattered baseline distributions.

The enhanced embedding structure significantly contributes to retrieval robustness, particularly concern-

ing abstract queries. As illustrated in Figure 3, a qualitative side-by-side comparison reveals the limitations

inherent in lexical matching. For example, BM25 frequently retrieves irrelevant images due to polysemy, such

as matching "bank" as a financial institution with "bank" as a river edge. In contrast, the proposed T5 pipeline

effectively addresses these linguistic ambiguities, retrieving contextually appropriate results even when the

query keywords are not explicitly present. Recent works have similarly demonstrated that utilizing generated

captions as an intermediate modality significantly enriches semantic matching capabilities [19, 20].
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Figure 3. Qualitative comparison of retrieval results. T5 handles polysemy and synonyms effectively compared to lexical

matching baselines.

To enable rigorous error analysis and real-time verification of these findings, we have developed a

comprehensive evaluation interface, as depicted in Figure 4. This tool facilitates the examination of the

divergence between lexical scores and semantic relevance judgments. Manual verification using this dashboard

confirms that the ranking order generated by the generative T5 pipeline aligns more closely with human

intuition than traditional keyword-based systems, thereby validating the practical viability of the proposed

approach.

Figure 4. The comprehensive evaluation interface developed for real-time error analysis.

5. Conclusion and Future Work

This study addresses the significant challenge of deploying high-performance cross-modal retrieval systems

in resource-constrained environments. By reconceptualizing the retrieval task as a generative text-to-text

problem, we propose a novel pipeline that integrates the visual distillation capabilities of BLIP with the

semantic encoding power of T5.

The experimental results validate that our approach effectively bridges the modality gap without the

substantial computational overhead associated with end-to-end vision transformers. Quantitatively, the

proposed T5-based pipeline achieved a Semantic Average Recall (SAR@5) of 0.561, significantly outperforming

traditional lexical baselines (BM25: 0.312) and dense sentence embeddings (SBERT: 0.524). While the state-

of-the-art CLIP model retains a marginal advantage in absolute semantic alignment (0.620), our framework
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offers a pragmatic compromise, delivering approximately 90

Theoretically, this research demonstrates that "semantic distillation," defined as the process of converting

high-dimensional visual features into dense text embeddings, serves as a sufficient proxy for retrieval in many

practical applications. The qualitative analysis further confirms that our method successfully handles abstract

queries and linguistic variations such as polysemy and synonymy, where keyword-based methods fail.

Despite these promising results, two limitations warrant attention. First, the retrieval accuracy is intrinsi-

cally upper-bounded by the quality of the generated captions. Errors or "hallucinations" produced by the BLIP

model during the indexing phase inevitably propagate to the retrieval stage. Second, by converting images

entirely to text, fine-grained spatial information, such as the precise location of an object within a scene, is

discarded, which may limit applicability in tasks requiring localization.

Future research will focus on two directions to mitigate these limitations. We plan to explore Visual Aware

Text Refinement, where lightweight visual adapters are injected into the T5 encoder to retain crucial spatial

features without the full cost of a Vision Transformer. Additionally, we intend to investigate Knowledge

Graph Augmentation to enrich the generated captions with external commonsense knowledge, potentially

closing the remaining accuracy gap with large-scale multimodal models.

Author Contributions

MF: Conceptualization, Methodology, Software, Writing–original draft. DM: Formal analysis, Validation,

Supervision. AI: Data curation, Visualization, Investigation. IS: Writing–review & editing, Project administra-

tion. EV: Validation, Resources, Writing–review & editing. All authors have read and agreed to the published

version of the manuscript.

Funding

This research received no external funding.

Acknowledgments

The authors express their profound gratitude to the Department of Computer Science at Universitas Nusa

Mandiri, the Intelligent Data Science Research Group at Universitas Muhammadiyah Semarang, and the Data

Mining and Analytics research group at International Hellenic University for their indispensable institutional

and technical support in this study. We also extend our appreciation to the administration of these universities

for their assistance in fostering a collaborative research environment.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that

could have appeared to influence the work reported in this paper.

References

[1] Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, et al. Learning Transferable Visual Models

From Natural Language Supervision. In: International Conference on Machine Learning (ICML). PMLR;

2021. p. 8748-63. Available from: https://proceedings.mlr.press/v139/radford21a.

[2] Jia C, Yang Y, Xia Y, Chen YT, Parekh Z, Pham H, et al. Scaling Up Visual and Vision-Language

Representation Learning With Noisy Text Supervision. In: International Conference on Machine

Learning (ICML). PMLR; 2021. p. 4904-16. Available from: https://proceedings.mlr.press/
v139/jia21b.html.

[3] Li J, Li D, Xiong C, Hoi S. BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language

Understanding and Generation. In: International Conference on Machine Learning (ICML). PMLR; 2022.

p. 12888-900. Available from: https://proceedings.mlr.press/v162/li22n.html.

https://proceedings.mlr.press/v139/radford21a
https://proceedings.mlr.press/v139/jia21b.html
https://proceedings.mlr.press/v139/jia21b.html
https://proceedings.mlr.press/v162/li22n.html


JOURNAL OF INTELLIGENT COMPUTING AND HEALTH INFORMATICS 93

[4] Goyal K, Gupta U, De A, Chakrabarti S. Deep neural matching models for graph retrieval. In: Proceedings

of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval;

2020. p. 1701-4. Available from: https://doi.org/10.1145/3397271.3401216.

[5] Reimers N, Gurevych I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. In:

Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Association for Computational Linguistics; 2019. p. 3982-92. Available from: https://doi.org/10.
48550/arXiv.1908.10084Focustolearnmore.

[6] Treviso M, Ji T, Lee B Ji-Ung andajanoh, Martins AF. Efficient Methods for Natural Language Processing:

A Survey. Transactions of the Association for Computational Linguistics. 2023;11:826-60. Available from:

https://doi.org/10.1162/tacl_a_00577.

[7] Wang Z, Liu R, De Luca M. Cross-Modal Index Alignment: Bridging Vision and Language in Neural

Retrieval Architectures. Computer Science Bulletin. 2025;8(01):327-46. Available from: https://doi.
org/10.71465/csb165.

[8] Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, et al. Exploring the Limits of Transfer

Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research. 2020;21(140):1-

67. Available from: http://jmlr.org/papers/v21/20-074.html.

[9] Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, et al. Microsoft COCO: Common objects in

context. In: European Conference on Computer Vision (ECCV). Springer; 2014. p. 740-55. Available

from: https://doi.org/10.1007/978-3-319-10602-1_48.

[10] Plummer BA, Wang L, Cervantes CM, Caicedo JC, Hockenmaier J, Lazebnik S. Flickr30k entities: Col-

lecting region-to-phrase correspondences for richer image-to-sentence models. International Journal of

Computer Vision. 2015;123(1):74-93. Available from: https://openaccess.thecvf.com/content_
iccv_2015/html/Plummer_Flickr30k_Entities_Collecting_ICCV_2015_paper.html.

[11] Hubert N, Monnin P, Brun A, Monticolo D. Sem@K: Is my knowledge graph embedding model

semantic-aware? arXiv preprint arXiv:230105601. 2023. Available from: https://doi.org/10.
3233/SW-233508.

[12] Rasiwasia N, Costa Pereira J, Coviello E, Doyle G, Lanckriet G, Levy R, et al. A New Approach to Cross-

Modal Multimedia Retrieval. In: Proceedings of the ACM Multimedia 2010 International Conference;

2010. p. 251-60. Available from: https://doi.org/10.1145/1873951.1873987.

[13] Song X, Lin H, Wen H, Hou B, Xu M, Nie L. A comprehensive survey on composed image retrieval.

ACM Transactions on Information Systems. 2025;44(1):1-54. Available from: https://doi.org/10.
1145/3767328.

[14] Li T, Kong L, Yang X, Wang B, Xu J. Bridging modalities: A survey of cross-modal image-text retrieval.

Chinese Journal of Information Fusion. 2024;1(1):79-92. Available from: https://doi.org/10.62762/
CJIF.2024.361895.

[15] George J. Multimodal sentiment analysis: integrating text, image, and audio. Multimodal

Learning Using Heterogeneous Data. 2026:99-115. Available from: https://doi.org/10.1016/
B978-0-443-27528-9.00017-6.

[16] Arslan B. Minutiae-Free Fingerprint Recognition via Vision Transformers: An Explainable Approach.

Applied Sciences. 2026;16(2):1009. Available from: https://doi.org/10.3390/app16021009.

[17] Zhong D, Li X, Huang Z, Wang S, Yu Z, Hou M, et al. Multi-modal multi-scale representation learning

via cross-attention between chest radiology images and free-text reports. Biomedical Signal Processing

and Control. 2026;111:108318. Available from: https://doi.org/10.1016/j.bspc.2025.108318.

[18] Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of machine learning research.

2008;9(11):2579-605. Available from: https://www.jmlr.org/papers/v9/vandermaaten08a.
html.

https://doi.org/10.1145/3397271.3401216
https://doi.org/10.48550/arXiv.1908.10084 Focus to learn more
https://doi.org/10.48550/arXiv.1908.10084 Focus to learn more
https://doi.org/10.1162/tacl_a_00577
https://doi.org/10.71465/csb165
https://doi.org/10.71465/csb165
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.1007/978-3-319-10602-1_48
https://openaccess.thecvf.com/content_iccv_2015/html/Plummer_Flickr30k_Entities_Collecting_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_iccv_2015/html/Plummer_Flickr30k_Entities_Collecting_ICCV_2015_paper.html
https://doi.org/10.3233/SW-233508
https://doi.org/10.3233/SW-233508
https://doi.org/10.1145/1873951.1873987
https://doi.org/10.1145/3767328
https://doi.org/10.1145/3767328
https://doi.org/10.62762/CJIF.2024.361895
https://doi.org/10.62762/CJIF.2024.361895
https://doi.org/10.1016/B978-0-443-27528-9.00017-6
https://doi.org/10.1016/B978-0-443-27528-9.00017-6
https://doi.org/10.3390/app16021009
https://doi.org/10.1016/j.bspc.2025.108318
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://www.jmlr.org/papers/v9/vandermaaten08a.html


94 Firmansyah et al.

[19] Xu J, Yang L, Li X, Wu T, Tang YY, Wang PSP. Unlocking the Potential of Auxiliary Captions via

Dual-Branch Multi-Scale Network for Composed Image Retrieval. International Journal of Pattern

Recognition and Artificial Intelligence. 2026;40(02):2554021. Available from: https://doi.org/10.
1142/S0218001425540217.

[20] Yang D, Yang L, Wu T, Li X, Tang YY, Wang PSP. Similarity-Guided Denoising Reconstruction for

Unsupervised Image Captioning. International Journal of Pattern Recognition and Artificial Intelligence.

2026. Available from: https://doi.org/10.1142/S0218001426590056.

https://doi.org/10.1142/S0218001425540217
https://doi.org/10.1142/S0218001425540217
https://doi.org/10.1142/S0218001426590056

	Introduction
	Preliminaries
	Problem Formulation
	Generative Captioning with BLIP
	Semantic Text Encoding

	Methodology
	Proposed System Architecture
	Algorithmic Procedure
	Computational Complexity Analysis
	Experimental Reproducibility

	Results and Discussion
	Comparative Retrieval Performance
	Efficiency Trade-off Analysis
	Qualitative Analysis and Interpretation

	Conclusion and Future Work

