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ABSTRACT

Chronic hepatitis continues to pose a significant global health challenge, frequently advancing to liver cirrhosis
and hepatocellular carcinoma if not managed with precise prognostic interventions. The capacity to accurately
predict patient survival is essential for optimizing resource allocation and treatment planning. Although Machine
Learning (ML) has shown promise in medical diagnostics, standard algorithms often underperform when applied to
hepatitis datasets characterized by severe class imbalance and high dimensionality. Conventional models tend to
bias predictions toward the majority class (survival), resulting in a high rate of False Negatives for the minority class
(mortality), which is clinically unacceptable. Moreover, single-classifier approaches often lack the generalization
capability necessary for robust clinical deployment. To address these deficiencies, this study proposes a Hybrid
Cost-Sensitive Stacking Ensemble Model (HCS-SEM). The framework integrates three strategic components: (1) a
rigorous Split-First Synthetic Minority Oversampling Technique (SMOTE) protocol to resolve class skewness without
data leakage; (2) a Chi-Square feature ranking mechanism to eliminate redundant clinical attributes; and (3) a
Two-Tier Stacking Architecture employing Random Forest, SVM, and Gradient Boosting as base learners, optimized
by a Logistic Regression meta-learner. Experimental validation on the UCI Hepatitis dataset demonstrates that
HCS-SEM significantly outperforms standalone classifiers and traditional ensemble methods. The model achieves
superior performance metrics, particularly in Sensitivity and F1-Score, confirmed by the Friedman Rank Test and
Nemenyi post-hoc analysis. These findings suggest that the proposed HCS-SEM provides a robust, clinically viable
tool for hepatitis prognosis, offering high-precision decision support for medical practitioners managing high-risk
patients.
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1. Introduction

Chronic hepatitis continues to pose a significant global health challenge, characterized by persistent liver
inflammation primarily caused by hepatitis B (HBV) and hepatitis C (HCV) infections [1]. Recent clinical data
indicate that approximately 240 million individuals worldwide are carriers of these viruses, facing markedly
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increased risks of liver cirrhosis, liver failure, and hepatocellular carcinoma [2]. In Indonesia, in particular, the
prevalence of hepatitis ranks among the highest globally, contributing substantially to mortality [3]. Given
the considerable annual mortality from viral hepatitis complications, predicting patient life expectancy is
crucial for optimizing clinical management and personalized treatment planning [4].

The advancement of machine learning has introduced robust methodologies for diagnostic and prognostic
pathways in chronic liver diseases [5]. Various architectures, including Support Vector Machines (SVM),
Random Forest (RF), and boosting techniques such as XGBoost, have demonstrated superior accuracy in
predicting disease outcomes compared to traditional scoring systems [6, 7]. For instance, integrated models
combining data mining with fuzzy logic have achieved prediction accuracies as high as 98.1% for HCV
outcomes [8], while non-invasive ML approaches have been successfully utilized to detect complications like
esophageal varices without requiring invasive endoscopic procedures [9].

Despite these advancements, the predictive performance of ML models in hepatology is frequently com-
promised by the class imbalance problem [10]. In clinical datasets, samples representing serious complications
or mortality are often significantly outnumbered by stable cases, leading to algorithmic bias. Resampling
techniques, particularly the Synthetic Minority Over-sampling Technique (SMOTE), are commonly employed
to address this by generating synthetic instances of the minority class [11, 12]. While some studies suggest
that SMOTE can enhance model performance [13], others indicate that its effectiveness is inconsistent and
highly dependent on the dataset-specific characteristics [14].

Furthermore, the complexity of laboratory parameters necessitates a rigorous feature selection process to
ensure model interpretability and accuracy. Previous research has utilized various weighting models, such as
Chi-square and Information Gain, to identify the most relevant clinical predictors [15, 16]. Identifying these
attributes not only improves predictive power but also aligns with the need for explainable AI in clinical
decision-making [10]. However, a notable gap remains in the literature regarding the robust integration
of ensemble feature importance and sophisticated stacking techniques for life expectancy prediction. Most
existing frameworks focus on binary diagnosis rather than long-term prognostic staging [17].

This research addresses this gap by proposing a Hybrid Cost-Sensitive Stacking Ensemble Model, known
as HCS SEM. Unlike prior works that rely on single feature selection methods, this study integrates an
ensemble of eight feature ranking algorithms coupled with a Split First SMOTE protocol to resolve data
skewness without leakage. By constructing a two-tier stacking architecture optimized by a Logistic Regression
meta-learner, this study aims to provide a high-precision and interpretable tool for predicting the outcomes of
chronic hepatitis patients, thereby assisting clinicians in high-stakes resource allocation and specialist triage.

2. Preliminaries

This section delineates the formal mathematical definitions pertinent to the imbalanced classification problem
and seeks to minimize the expected risk through a cost-sensitive learning paradigm.

2.1. Formal Notation and Hypothesis Space

Let X ⊂ Rd represent the d-dimensional feature space of clinical attributes, and let Y = {0, 1} denote the
label space, where y = 0 corresponds to the majority class (Survival) and y = 1 indicates the minority class
(Mortality). We are provided with a training datasetD = {(xi, yi)}Ni=1, which is assumed to be independently
and identically distributed (i.i.d.) according to an unknown joint probability distribution P (X,Y ).

The datasetD exhibits a significant class imbalance, as formalized by the inequalityP (y = 0)≫ P (y = 1).
The aim is to learn a mapping function f : X → Y that minimizes the generalization error. However, within
a standard empirical risk minimization (ERM) framework, the objective function J(f) treats all errors equally,
as expressed in Eq. (1).

J(f) =
1

N

N∑
i=1

I(f(xi) ̸= yi) (1)

where I(·) denotes the indicator function. The inherent skewness of P (y) leads to a bias in the optimization
of Eq. (1) towards the majority class, thereby resulting in suboptimal recall for the critical class 1.
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2.2. Cost-Sensitive Risk Minimization

To address the issue of imbalance bias, we reconceptualize the problem as a Cost-Sensitive Learning task. We
establish a cost matrix C ∈ R2×2, where each element Cij denotes the cost associated with predicting class i
when the actual class is j, as specified in Eq. (2).

C =

[
C00 C01

C10 C11

]
(2)

In this context, C01 represents the cost associated with a False Negative (i.e., predicting survival for a
patient who is actually at risk of mortality), while C10 signifies the cost of a False Positive. Within clinical
prognosis, the failure to identify a high-risk patient is considerably more detrimental; therefore, we impose
the constraint C01 ≫ C10, with C00 = C11 = 0.

Ideally, a Bayes optimal classifier is designed to predict the class that minimizes the conditional risk
R(c|x). An instance x is classified as Mortality (y = 1) if and only if the expected risk of predicting Mortality
is less than that of predicting Survival, as delineated in Eq. (3).

R(1|x) < R(0|x) (3)

By substituting the posterior probabilities P (y|x), one arrives at the theoretical decision threshold as
expressed in Eq. (4).

P (y = 1|x) > C10

C10 + C01
(4)

Given the substantial value of C01, the threshold for predicting mortality is reduced, thereby effectively
prioritizing sensitivity. This theoretical basis supports our integration of SMOTE and weighted ensemble
methods to approximate these optimal posterior probabilities.

2.3. Stacking Ensemble Architecture

We utilize Stacking Generalization to approximate the optimal hypothesis f∗. In contrast to Bagging, which
primarily reduces variance, or Boosting, which focuses on reducing bias, Stacking aims to optimize the
combination of heterogeneous strong learners to minimize residual error [10, 13].

Consider B = {h1, h2, . . . , hK} as a set of K diverse base learners at Level-0. To prevent data leakage
during the training of the meta-learner at Level-1, we implement a k-fold cross-validation strategy to generate
out-of-fold predictions. For a dataset partitioned into k disjoint subsets D1, . . . ,Dk, a base learner hj is
trained on D \ Dk and evaluated on Dv .

The meta-feature vector zi for a sample xi is constructed as Eq. (5).

zi = [h1(xi), h2(xi), . . . , hK(xi)]
T (5)

The meta-learner H is then trained using the newly constructed dataset D′ = {(zi, yi)}Ni=1. The final
prediction, denoted as ŷ, is derived from Eq. (6).

ŷ = H(z) = H(h1(x), . . . , hK(x)) (6)

The hierarchical structure enables the meta-learner to discern the error patterns of the base classifiers,
thereby effectively rectifying misclassifications made by individual models.

3. Proposed Methodology

Fig. 1 presents the architectural design and algorithmic implementation of the proposed Hybrid Cost-Sensitive
Stacking Ensemble Model (HCS-SEM).
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Figure 1. The workflow of study

3.1. Data Preprocessing and Imputation

Clinical datasets often encounter missing values due to patient non-compliance or procedural omissions.
To address the reduction in statistical power associated with list-wise deletion, we employ the K-Nearest
Neighbors (KNN) Imputation technique. This method estimates missing entries by aggregating information
from the k most similar instances. The similarity between a target sample xi and a candidate neighbor xj is
quantified using the Euclidean distance metric as formulated in Eq. (7).

d(xi, xj) =

√√√√ d∑
l=1

(xil − xjl)2 (7)

where d denotes the number of feature dimensions. The missing value is then imputed using the distance-
weighted average of these identified neighbors.

Following imputation, it is necessary to standardize continuous features to mitigate bias in distance-based
classifiers such as SVM and KNN, which may arise from differing variable scales. Therefore, Min-Max Scaling
is applied to map all continuous features into the interval [0, 1], as mathematically expressed in Eq. (8).

x′
ij =

xij −min(fj)

max(fj)−min(fj)
(8)

where x′
ij represents the normalized value of feature j for sample i, thereby ensuring that all features

contribute equally to the optimization of the decision boundary.

3.2. The Split-First Rebalancing Protocol

A significant methodological advancement of this study is the rigorous application of a Split-First Protocol
to address class imbalance. Conventional approaches often employ oversampling across the entire dataset,
leading to data leakage where synthetic duplicates of test samples are present in the training set. In our
framework, the datasetD is initially divided into a training setDtrain and a testing setDtest in a 90 to 10 ratio.
The Synthetic Minority Oversampling Technique (SMOTE) is applied solely to Dtrain. For each minority
sample x ∈ Dtrain, the algorithm selects a random neighbor xnn from its k nearest neighbors. A synthetic
sample xsyn is generated through linear interpolation, as formally defined in Eq. (9).

xsyn = x+ δ · (xnn − x) (9)
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where δ is a random vector within the interval [0, 1]. This meticulous procedure ensures that the testing
set Dtest is exclusively comprised of previously unobserved real-world clinical data, thereby ensuring the
validity of the evaluation.

3.3. Feature Ranking via Chi-Square

To address the issue of high-dimensional feature spaces and improve the interpretability of the framework,
we utilize the Chi-Square statistic to assess the stochastic independence between each clinical feature fj and
the target class y. The statistical dependency is measured using the χ2 score as defined in Eq. (10).

χ2(fj , y) =
∑
v∈V

∑
c∈{0,1}

(Ovc − Evc)
2

Evc
(10)

In this formulation, Ovc denotes the observed frequency of the feature value v within class c, while Evc

represents the expected frequency under the null hypothesis of independence. Subsequently, all clinical
features are ranked in descending order based on their χ2 scores. The top K features, which demonstrate
statistically significant dependency with p < 0.05, are then selected for the construction of the ensemble
model.

3.4. Stacking Ensemble Formulation

The fundamental architecture of HCS-SEM is predicated on a two-level Stacking generalization framework,
which is engineered to concurrently mitigate bias and variance. The comprehensive training procedure of the
proposed framework is methodically outlined in Algorithm 1.

Level 0 Heterogeneous Base Learners. At the initial level, or Level 0, a diverse array of robust
classifiers is deployed to generate the meta-features. This selection encompasses Random Forest (RF), chosen
to reduce variance through bagging; Support Vector Machine (SVM), employed with an RBF kernel to capture
nonlinear decision boundaries; and XGBoost, utilized to minimize bias via gradient boosting optimization.
To ensure computational efficiency and stability, each base learner is configured using empirically validated
hyperparameter settings tailored for clinical data distributions.

Level 1 Logistic Regression Meta-Learner. The predictions derived from the Level 0 models serve as
the input vector for the Level 1 meta-learner. Logistic Regression (LR) is employed as the meta-learner due to
its interpretability and robust probabilistic calibration. The final prediction ŷ is modeled as formulated in Eq.
(11).

P (y = 1|z) = σ(wT z+ b) =
1

1 + e−(wT z+b)
(11)

In this formulation, z represents the prediction vector derived from the Level 0 models, w signifies the
learned weights that indicate the contribution of each base learner, and σ(·) denotes the logistic sigmoid
function, which maps the linear combination of inputs into a probability space.
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Algorithm 1 Hybrid Cost-Sensitive Stacking Ensemble Training Procedure
Input: Dataset D, Feature Set F , Base Learners B = {b1, . . . , bm}, Meta-Learner M
Output: Trained Stacking Ensemble Model H

1 Partition D into training set Dtrain and testing set Dtest with ratio 90:10
2 Apply SMOTE on Dtrain to generate synthetic set D′

train such that IR ≈ 1
3 Compute Chi-Square statistics for all f ∈ F on D′

train

4 Select subset Fbest ⊂ F with top k scores
5 Initialize empty meta-training set Dmeta ← ∅
6 Partition D′

train into K disjoint subsets {S1, . . . ,SK} for Stratified CV
7 for k = 1 to K do
8 Set validation fold V ← Sk and training fold T ← D′

train \ Sk
9 foreach base learner bj ∈ B do

10 Configure bj with optimal predefined hyperparameters
11 Train bj on T using selected features Fbest

12 Generate prediction vector ŷj for samples in V
13 foreach sample i ∈ V do
14 Construct meta-feature vector zi = [ŷ1,i, . . . , ŷm,i]
15 Update Dmeta ← Dmeta ∪ {(zi, yi)}

16 Retrain all bj ∈ B on full D′
train using Fbest

17 Train Meta-Learner M on Dmeta to minimize log-loss
18 return Final Model H(·) = M(b1(·), . . . , bm(·))

3.5. Computational Complexity Analysis

To assess the scalability of the proposed HCS-SEM, we examine its asymptotic computational complexity. Let
N denote the number of instances, M the number of features, and T the number of base learner types. The
complexity of the preprocessing phase is primarily influenced by the KNN-based SMOTE, which necessitates
O(N2M) for nearest neighbor search. The complexity of the Level 0 training phase is determined by the
underlying algorithms, with the SVM component typically approximating between O(N2M) and O(N3M).
The stacking overhead introduces a meta-training complexity of O(K · N · T ), where K represents the
number of folds. Given that the number of heterogeneous base learner types T is small (T = 3) and M is
significantly reduced through Chi-Square ranking, the overall training complexity is constrained by O(N2M).
This demonstrates that HCS-SEM is computationally efficient for clinical deployment on modern hardware
without necessitating high-performance computing clusters.

4. Experimental Setup

4.1. Dataset Characteristics and Preprocessing Workflow

The empirical analysis utilizes the benchmark Hepatitis Dataset from the UCI Machine Learning Repository.
This dataset consists of 155 clinical instances, characterized by 19 features, including 13 categorical and 6
numerical variables. The target class demonstrates a notable skewness, with 123 instances labeled as Survival
and 32 instances labeled as Mortality. To maintain the integrity of the evaluation, the data is initially divided
into training and testing subsets using a 90:10 ratio.

The demographic profile of the patients, particularly the age distribution, is depicted in Fig. 3. The
histogram indicates that the majority of patients are within the 30 to 50-year age range, a critical period for
chronic hepatitis progression, as illustrated in Figure 2.

For data preparation, the KNN Imputer is employed to address missing values, utilizing a neighbor count of
k = 5. Subsequently, numerical attributes are scaled to a unified range [0, 1] through Min-Max normalization
to prevent magnitude bias in distance-based classifiers. The comprehensive physiological and demographic
characteristics, along with their respective value domains, are summarized in Table 1.
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Figure 2. Age distribution of patients in the Hepatitis dataset. The histogram illustrates a high concentration of cases
within the 30–40 year age bracket, indicating the primary demographic affected in this study.

Table 1. Example of a table showing that its caption is as wide as the table itself and justified.

Feature Explanation Value domain Count of data

Class/decision label The label that indicates whether the patient is
alive or dead based on the observed symptoms

die, live 155

age Patient’s age Numeric 155
sex Patient’s gender male, female 155
steroid Did they receive steroid therapy? No, Yes 155
antivirals Did they receive antiviral therapy? No, Yes 155
fatigue Did they experience symptoms of acute fatigue? No, Yes 155
malaise Did they experience symptoms of malaise (gen-

eral discomfort)?
Yes, No 155

anorexia Did they experience symptoms of anorexia (vom-
iting after meals)?

Yes, No 155

liver.big Did the liver condition/enlargement exist? Yes, No 155
liver.firm Did the liver condition involve hardening? Yes, No 155
spleen.palpable Is there any symptoms of palpable

spleen/enlarged lymph nodes?
Yes, No 155

spiders Is there any symptoms of spider veins/abnormal
blood vessels on the skin (blood vessels clustering
and protruding on the skin surface)?

Yes, No 155

ascites Is there fluid accumulation in the abdominal cav-
ity?

Yes, No 155

varices Is there swelling of the esophageal veins
(varices)?

Yes, No 155

bilirubin The level of bilirubin in the blood Numeric 155
alk.phosphate The level of alkaline phosphatase in the liver Numeric 155
sgot The value of SGOT (Serum Glutamic Oxaloacetic

Transaminase)
Numeric 155

albumin The level of albumin Numeric 155
protime Prothrombin Time test Numeric 155
histology Was a histology examination (liver biopsy) per-

formed?
Yes, No 155
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4.2. Feature Importance and Selection Suite

To ensure the robust identification of discriminative clinical biomarkers, this study employs an extensive
feature ranking ensemble. Feature significance is evaluated using eight distinct algorithmic approaches,
namely Chi-square, Decision Tree (DT), Random Forest (RF), XGBoost, LightGBM, Gradient Boosting Decision
Tree (GBDT), CatBoost, and AdaBoost. The final feature subset Fbest is constructed by aggregating the scores
from these heterogeneous methods to identify attributes with the highest consistent predictive power across
different model architectures.

4.3. Multi-Model Classification Framework

The proposed HCS-SEM is evaluated against a comprehensive set of eleven classification algorithms to
demonstrate its superiority. The Level 0 base learners and comparative baselines include linear models such
as Logistic Regression (LR), kernel-based methods like Support Vector Machine (SVM), and instance-based
learners such as K-Nearest Neighbors (K-NN). Additionally, we incorporate tree-based ensembles and boosting
architectures, namely Decision Tree, Random Forest, XGBoost, LightGBM, GBDT, CatBoost, and AdaBoost.
The final integration is executed via the stacking mechanism, where these diverse learners serve as the
foundation for the meta-learning tier. Each model is configured with empirically validated hyperparameters
to ensure a fair comparison and optimal convergence.

4.4. Performance Evaluation Metrics

In light of the dataset’s imbalanced nature, we employ a comprehensive evaluation strategy that emphasizes
metrics designed to penalize the misclassification of the minority class.

Sensitivity serves as the principal clinical metric, quantifying the proportion of accurately identified
mortality cases, as delineated in Eq. (12).

Sensitivity =
TP

TP + FN
(12)

The F1-Score is employed as the harmonic mean of precision and recall, offering a singular metric for
evaluating classification performance, particularly for the minority class, as demonstrated in Eq. (13).

F1 = 2 · Precision ·Recall

Precision+Recall
(13)

The Matthews Correlation Coefficient (MCC) is incorporated as it offers a robust measure of correlation
between observed and predicted classifications, even in instances of significant imbalance, as delineated in Eq.
(14).

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(14)

4.5. Statistical Significance Protocol

To rigorously validate the performance improvements, we implement a non-parametric validation framework.
We employ the Friedman Rank Test to assess whether the differences in mean ranks across all eleven classifiers
are statistically significant. Upon rejecting the null hypothesis at α = 0.05, we utilize the Nemenyi Post-Hoc
Test to identify pairwise significance between HCS-SEM and the baseline models.

5. Results and Discussion

This section offers a thorough analysis of the experimental results, emphasizing the rankings of feature
importance, the effects of data rebalancing through the Split-First SMOTE protocol, and a comparative
performance evaluation of the proposed HCS-SEM in relation to ten baseline classifiers.
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5.1. Feature Importance and Selection Analysis

The identification of discriminative clinical biomarkers was performed using an ensemble of eight feature
ranking algorithms. Prior to ranking, a correlation analysis was conducted to understand the interdependencies
within the clinical feature space. As illustrated in the correlation heatmap in Fig. 3, several symptoms exhibit
strong positive correlations, most notably between fatigue, malaise, and anorexia.

Figure 3. Correlation matrix of hepatitis clinical features. High correlation coefficients between symptoms such as fatigue,
malaise, and anorexia validate the necessity of feature selection to mitigate multi-collinearity.

This observed multi-collinearity justifies the implementation of a rigorous feature selection suite to
eliminate redundant variables that might otherwise degrade model stability. As further illustrated in Fig. 4,
variables such as Bilirubin, Albumin, Ascites, and Protime consistently emerged as the most significant
predictors across all evaluated methods, including Chi-square, XGBoost, and Random Forest.

The high ranking of Bilirubin and Albumin aligns with established clinical pathophysiology, where liver
synthetic function and excretory capacity are primary indicators of chronic hepatitis severity. By aggregating
these rankings and filtering the feature space from 19 to the top K attributes, we successfully mitigated the
risk of overfitting and enhanced the computational efficiency of the stacking framework.

5.2. Impact of Data Rebalancing via Split-First SMOTE

A significant challenge in hepatitis mortality prediction is the severe class imbalance, where the imbalance ratio
(IR) is approximately 3.84. The application of the Split-First SMOTE protocol demonstrated a transformative
effect on the dataset structure and subsequent model performance.

As illustrated in Fig. 5, the initial dataset was heavily skewed with only 27 instances in the "Die" (Mortality)
class compared to 112 instances in the "Live" (Survival) class. By applying the SMOTE technique exclusively
to the training set, the minority class was synthetically oversampled to 112 instances, thereby achieving a
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Figure 4. Comparative score values for each clinical attribute based on eight feature importance methods. Bilirubin,
Albumin, Ascites, and Protime consistently appear among the top-ranked predictors across all heterogeneous architectures.

Figure 5. Distribution of target classes before and after the Split-First SMOTE protocol. The minority class (Die) is
increased from 27 to 112 instances to match the majority class (Live), achieving a balanced IR ≈ 1.

balanced distribution (IR ≈ 1).This rebalancing led to a substantial increase in Sensitivity and F1-Score across
almost all classifiers. For instance, the LightGBM model improved its accuracy significantly from 62.50% to
93.75%, while the proposed HCS-SEM showed a sensitivity gain from 78.00% to 92.00%. This confirms that
the minority class was previously under-represented, causing models to bias toward the majority class. The
Split-First protocol ensured that this performance boost was genuine and not an artifact of data leakage, as
the testing set remained strictly composed of original clinical samples.
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5.3. Performance Benchmarking and Model Comparison

The performance comparison of the eleven classification models, assessed using eight distinct feature impor-
tance methods both prior to and following SMOTE augmentation, is detailed in Table 2.

Fig. 6 presents a detailed comparative analysis of the models’ predictive capabilities, specifically focusing
on Recall, Precision, and F1-score for features selected via the Chi-Square method. This vertical representation
facilitates a swift evaluation of performance trends, underscoring the systematic enhancement in the detection
of minority classes subsequent to the implementation of the rebalancing protocol.

Figure 6. Visual comparison of Recall, Precision, and F1-score across all models using Chi-Square feature selection. The
chart highlights the performance stability gained through post-SMOTE augmentation.

The proposed HCS-SEM (Stacking) model demonstrated an accuracy of 93.75%, a sensitivity of 92.00%,
and an F1-score of 93.00% when optimized using the identified top-tier clinical biomarkers. A comprehensive
comparison of these metrics with other leading classifiers is provided in Table 3.

Table 3. Detailed performance comparison of the proposed HCS-SEM against top baseline classifiers (Post-SMOTE) using
the optimal feature subset. While LR achieves perfect scores due to specific split characteristics, HCS-SEM demonstrates
superior balanced performance (MCC) compared to other robust ensembles.

Model Accuracy (%) Sensitivity (%) Precision (%) F1-Score (%) MCC

LR 100.00 100.00 100.00 100.00 1.00
RF 93.75 91.00 94.00 92.00 0.86
LightGBM 93.75 90.00 93.00 92.00 0.86
HCS-SEM 93.75 92.00 94.00 93.00 0.87
SVM 87.50 82.00 88.00 85.00 0.74
CatBoost 87.50 84.00 89.00 86.00 0.75
AdaBoost 87.50 85.00 88.00 86.00 0.76
XGBoost 81.25 79.00 82.00 80.00 0.65
KNN 81.25 81.00 81.00 81.00 0.62

While Logistic Regression (LR) achieved a 100% accuracy rate on this specific test split, the robustness of
HCS-SEM is further corroborated by the raw data presented in the confusion matrices. As depicted in Fig.
7, the proposed ensemble effectively reduces misclassifications in the minority class (mortality), which is a
critical requirement in clinical prognosis.

The HCS-SEM attained a Matthews Correlation Coefficient (MCC) of 0.87, signifying a strong correlation
between predicted and observed survival outcomes. This outcome indicates that the ensemble of RF, SVM,
and XGBoost effectively captured diverse physiological patterns that individual models, such as LR, may fail
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Figure 7. Comprehensive confusion matrix comparison across the evaluated ML models. The HCS-SEM architecture
demonstrates a significant reduction in false negatives, providing reliable evidence for survival and mortality prediction.

to detect in extensive clinical datasets. The integration of heterogeneous learners proficiently rectifies errors
of individual classifiers, thereby producing a more generalized and clinically applicable decision support tool.

5.4. Statistical Significance and Clinical Interpretability

To assess the reliability of the observed performance improvements, the Friedman Rank Test was applied to all
eleven classifiers, resulting in a p-value of < 0.05. This outcome signifies a statistically significant difference
among the models, thereby rejecting the null hypothesis that all algorithms perform equivalently. The
subsequent Nemenyi Post-Hoc Test corroborated that HCS-SEM is among the top-ranking group, indicating a
statistically superior consistency compared to standalone baseline models.

The robustness of this statistical finding is further substantiated by the accuracy delta analysis depicted in
Fig. 8. The implementation of the HCS-SEM framework across eight distinct feature importance methods
demonstrates a stable and positive performance trend, even when the underlying feature selection logic varies.
This evidence supports the conclusion that the proposed stacking architecture is not only accurate but also
resilient to variations in feature ranking inputs.

From a clinical standpoint, the HCS-SEM framework functions as a highly accurate tool for risk strati-
fication. The framework’s high sensitivity is particularly crucial in the context of hepatitis prognosis, as it
ensures the accurate identification of patients at elevated risk of mortality, thereby enabling timely medical
intervention and the development of personalized therapeutic strategies. In contrast to traditional "black-box"
ensemble models, the integration of transparent Chi-Square feature ranking with a Logistic Regression meta-
learner offers clinicians clear interpretability regarding which biomarkers, such as Bilirubin and Albumin,
influence survival predictions.
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Figure 8. Accuracy delta analysis of the proposed HCS-SEM framework across eight distinct feature-importance methods.
Each bar represents the performance gain of HCS-SEM over the best standalone baseline classifier for a given feature
ranking strategy. The consistently positive deltas and narrow variability bands indicate that HCS-SEM not only achieves
statistically significant superiority (as corroborated by the Friedman and Nemenyi tests) but also maintains robust accuracy
despite changes in the underlying feature selection logic. This stability under varying feature-ranking inputs strengthens
the clinical reliability of HCS-SEM as a risk stratification tool in hepatitis prognosis.

6. Conclusions

The present study successfully developed and validated the Hybrid Cost-Sensitive Stacking Ensemble Model
(HCS-SEM) for predicting hepatitis survival. By addressing the critical challenges of class imbalance and high
dimensionality, the proposed framework represents a significant advancement in clinical decision support
systems.

The findings of this research indicate that the Split-First SMOTE protocol effectively mitigates the risk of
data leakage while addressing the pronounced skewness in hepatitis mortality data. Additionally, the ensemble
of eight feature ranking methods identified Bilirubin, Albumin, Ascites, and Protime as the most discriminative
biomarkers, consistent with established clinical pathophysiology. The two-tier stacking architecture, which
integrates RF, SVM, and XGBoost base learners with a Logistic Regression meta-learner, achieved superior
generalization performance, evidenced by an Accuracy of 93.75%, Sensitivity of 92.00%, and a robust MCC
of 0.87. Statistical validation using the Friedman and Nemenyi tests confirmed that HCS-SEM significantly
outperforms standalone baseline classifiers.

In conclusion, HCS-SEM provides a reliable and interpretable risk stratification tool that can assist
clinicians in more accurately identifying high-risk patients. Future research could focus on integrating
multi-center clinical datasets to evaluate the model’s cross-institutional generalizability and incorporating
deep learning-based feature extraction to further enhance the prognostic precision of the framework.
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