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Abstract: Early detection of Type 2 Diabetes Mellitus (T2DM) is critical to preventing 
long-term complications such as cardiovascular disease, nephropathy, and retinopathy. 
However, conventional diagnostic approaches are often invasive, costly, and unsuitable for 
population-scale screening. This study proposes a non-invasive, machine learning-based 
framework for early T2DM detection using electronic health records (EHRs) from a 
publicly available Kaggle dataset. Key non-invasive features including demographics, vital 
signs, medication history, and temporal health trends were extracted and used to train six 
classifiers: random forest (RF), support vector machine (SVM), naïve bayes (NB), 
alternating decision tree (ADT), random tree (RT), and k-nearest neighbors (KNN). Class 
imbalance was addressed using the synthetic minority over-sampling technique (SMOTE) 
at 0%, 150%, and 300% levels. Experimental results show that RF achieved the highest 
AUC (88.45%) at 150% SMOTE, while SVM demonstrated the best sensitivity gains when 
temporal features and feature selection were applied. The proposed framework 
demonstrates the potential of interpretable, EHR-based ML models for scalable, cost-
effective diabetes screening and offers a reproducible benchmark for future applications in 
real-world clinical data. 
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1. Introduction 
Type 2 Diabetes Mellitus (T2DM) is a chronic 

metabolic disorder characterized by insulin resistance and 
progressive β-cell dysfunction, resulting in persistent 
hyperglycemia. The global burden of T2DM continues to 
escalate, with the World Health Organization (2023) 
reporting approximately 1.5 million deaths directly 
attributable to diabetes. Furthermore, the Global Burden 
of Disease Study 2021 indicates a steady increase in 

T2DM-related incidence and mortality across nearly all 
demographic regions over the past decade (Global Burden 
of Disease Collaborative Network, 2024). Long-term 
complications include cardiovascular disease, 
nephropathy, neuropathy, and retinopathy, all of which 
contribute significantly to morbidity and healthcare 
expenditure. Therefore, early detection and intervention 
are critical to reducing the progression and impact of this 
disease. 

Conventional diagnostic methods such as fasting blood 
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glucose (FBG), glycated hemoglobin (HbA1c), and oral 
glucose tolerance tests (OGTT) are effective but invasive, 
time-consuming, and impractical for large-scale 
implementation, particularly in low-resource 
environments (Lin et al., 2020). This underscores the need 
for alternative, non-invasive approaches that are both 
scalable and cost-effective. 

Electronic Health Records (EHRs) have emerged as a 
valuable source of patient information, containing 
structured data on demographics, clinical observations, 
vital signs, medical history, and medication usage. When 
analyzed using machine learning (ML) algorithms, EHRs 
can uncover complex and nonlinear patterns indicative of 
T2DM risk. This integration of health informatics and 
artificial intelligence has the potential to support timely, 
data-driven clinical decisions and enhance disease 
prevention strategies. 

Recent literature supports this direction. According to a 
comprehensive review by Kiran et al. (2025), machine 
learning models built exclusively on structured EHR data 
demonstrate consistently strong performance in T2DM 
prediction. Their study emphasizes that such unimodal 
models are particularly valuable when interpretability, 
accessibility, and integration into existing healthcare 
infrastructure are prioritized. Similarly, Hennebelle et al. 
(2024) proposed a smart healthcare architecture 
combining ML with cloud computing, with Random 
Forest (RF) outperforming logistic regression by 6% in 
prediction accuracy. Bernardini et al. (2020) applied 
support vector machine (SVM) algorithms to clinical 
datasets and demonstrated that SVMs are capable of 
achieving high precision in predicting diabetes, especially 
when trained on structured medical features. 

Despite these advancements, critical challenges persist. 
These include the class imbalance often present in medical 
datasets, underutilization of temporal features that reflect 
disease progression, and the lack of external validation 
necessary for model generalizability. Additionally, many 
studies rely on proprietary data, limiting reproducibility 
and comparability across models. 

In this study, we aim to develop and evaluate a non-
invasive T2DM detection model using a publicly available 
EHR dataset. The objectives of this research are as 
follows: 
• To compare the predictive performance of multiple 

machine learning classifiers, including Random Forest, 
Naïve Bayes, Support Vector Machine, Alternating 
Decision Tree, Random Tree, and k-Nearest Neighbors. 

• To incorporate temporal features such as trends in body 
mass index (BMI), blood pressure, and weight to 
enhance model accuracy. 

• To address class imbalance using the Synthetic 
Minority Over-sampling Technique (SMOTE) and 
evaluate its impact on key performance metrics. 

• To validate the model’s performance using 10-fold 
cross-validation for improved reliability. 
The remainder of this article is structured as follows. 

Section 2 describes the materials and methods used, 
including dataset characteristics, preprocessing steps, and 
modeling techniques. Section 3 presents and discusses the 
results of our experiments. Section 4 outlines the study’s 
limitations and Section 5 concludes with key findings and 

directions for future research. 

2. Materials and Methods 
This study presents a predictive modeling framework 

for early non-invasive detection of Type 2 Diabetes 
Mellitus (T2DM) using electronic health records (EHRs). 
The workflow includes data preprocessing, temporal 
feature engineering, machine learning (ML) model 
training, class balancing with SMOTE, and multi-metric 
performance evaluation. The complete workflow is 
illustrated in Fig. 1. 

2.1 Dataset 

The dataset used was obtained from Kaggle and 
contains anonymized EHR data spanning from 2009 to 
2012. It includes a wide range of non-invasive patient 
attributes, including demographics, vital signs, medical 
diagnoses, medication use, and lifestyle indicators. 
Initially, 529 variables were extracted. After feature 
selection, 12 key predictors were retained for model 
development. Table 1 summarizes the retained features 
and their characteristics. 

2.2 Data preprocessing 

Before training machine learning models, the dataset 
was preprocessed to address typical issues found in 
clinical data, including missing values, outliers, and 
variations in data scale. These steps were essential to 
ensure that the models could learn from consistent, high-
quality inputs and to minimize the risk of bias or 
overfitting. 

a. Handling missing values. 

Missing data were handled using imputation methods 
tailored to the nature of each variable. For numerical 
features such as body mass index (BMI), systolic and 
diastolic blood pressure, and weight, missing values were 
replaced with the median. This method was chosen for its 
robustness against skewed distributions and outliers, 
which are prevalent in real-world health data. For 
categorical variables, such as smoking status and 
medication usage, the mode the most frequent category 
was used. These choices are supported by Tabassum et al. 
(2022), who emphasize that simple, robust imputation 
strategies are preferable when working with biomedical 
datasets to avoid introducing artificial bias and to preserve 
interpretability. 

b. Outlier detection and treatment. 

Outliers were identified using the Z-score method, 
which detects values exceeding ±3 standard deviations 
from the mean. Rather than eliminating these data points 
which could reduce statistical power and sample 
representativeness, they were replaced with the feature’s 
median value. This approach is consistent with current 
recommendations for clinical predictive modeling, which 
suggest adjusting extreme values to preserve data 
completeness while mitigating their impact on model 
training (Nawaz et al., 2024). 

c. Normalization 
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To ensure feature comparability and improve model 
performance, Z-score normalization was applied to all 
continuous variables. This method transforms each 
feature into a standardized distribution with a mean of 

zero and a standard deviation of one, using the following 
in Eq. (1). 

 𝑋 ′ = 𝑋−𝜇
𝜎

 (1) 

 
Fig 1. The workflow of this study.  

Table 1.  Summary of key features in dataset.  
FEATURES DESCRIPTION DATA TYPE VALUE DOMAIN COUNT OF DATA 

Age Patient's age at the time of record Numerical 18–100 years 9.947 

Gender Patient's gender Categorical Male, Female 9.947 

BMI Body Mass Index (weight-to-height ratio) Numerical 10–50 kg/m² 9.460 
Systolic_BP Systolic blood pressure Numerical 90–200 mmHg 9.320 

Diastolic_BP Diastolic blood pressure Numerical 50–120 mmHg 9.320 

Weight Patient’s weight in kilograms Numerical 30–200 kg 9.500 

Smoking_Status Smoking history Categorical Current, Former, 
Never 8.750 

Hypertension Presence of hypertension Categorical Yes, No 9.947 
Dyslipidemia Presence of abnormal cholesterol levels Categorical Yes, No 9.500 

Medication_Count Number of prescribed medications Numerical 0–15 9.947 

Diagnosis_Count Total number of past medical diagnoses Numerical 0–50 9.947 
Diabetes_Status Whether the patient was diagnosed with 

diabetes Categorical Yes, No 9.947 
 
where 𝑋 is the original value, 𝜇 is the mean, and 𝜎 isthe 

standard deviation. Z-score normalization was preferred 
over min–max scaling due to its robustness in handling 
features with varying ranges and skewed distributions. 
Moreover, it is well-suited for models such as support 
vector machines (SVM) and k-nearest neighbors (KNN), 
which rely on distance or margin-based calculations. 
Singh and Singh (2021) highlight that normalization 
techniques significantly influence model performance in 
healthcare datasets, particularly when features differ in 
unit scale or variance. 

All preprocessing steps were implemented using open-
source libraries in Python, including pandas, numpy, and 

scikit-learn. After preprocessing, the dataset consisted of 
9,947 complete and standardized patient records, ready for 
temporal feature engineering and classifier training. 

2.3 Feature engineering 

Feature engineering is a crucial step in the development 
of predictive models, particularly in healthcare, where raw 
electronic health records (EHRs) often contain 
heterogeneous, unstructured, or temporally sensitive 
information. In this study, features were categorized into 
three groups: temporal clinical indicators, medication-
related variables, and demographic and lifestyle attributes. 
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These were selected based on clinical relevance to type 2 
diabetes mellitus (T2DM) and their availability in the 
dataset. 

a. Temporal clinical indicators 

To capture longitudinal health dynamics, temporal 
features were derived from continuous variables such as 
body mass index (BMI), systolic and diastolic blood 
pressure, and weight. For each patient, a linear regression 
was fitted to historical observations, and the slope of the 
regression line was used as a proxy for temporal trends. 
This approach enables the model to account for gradual 
physiological changes rather than relying solely on static 
values. Studies have shown that incorporating temporal 
slopes improves early detection of chronic conditions by 
capturing disease progression patterns not evident in 
snapshot data (Moglia et al., 2025). 

b. Medication-related features 

Pharmacological treatment history was included to 
reflect underlying comorbidities associated with T2DM 
risk. Features were constructed based on the frequency 
and category of prescribed medications, including statins, 
antihypertensives, and ACE inhibitors. Rather than 
encoding medications as binary indicators, we aggregated 
prescriptions by class and count to reflect therapeutic 
intensity. Prior work has demonstrated that such 
structured medication profiles enhance model 
performance in EHR-based prediction tasks (Bayramli et 
al., 2022). 

c. Demographic and lifestyle attributes 

Demographic variables (e.g., age, gender) and lifestyle-
related indicators (e.g., smoking status, hypertension, and 
dyslipidemia history) were also included. These features 
represent known risk factors for T2DM and provide 
essential context for individual susceptibility. For 
instance, age is one of the most significant predictors of 
metabolic disorders, and smoking is independently 
associated with increased insulin resistance and 
inflammation. Integrating these attributes aligns with 
findings from large-scale population studies linking 
lifestyle and comorbidity profiles to diabetes risk (Lee et 
al., 2025). 

d. Feature selection 

Following feature construction, irrelevant or redundant 
features were filtered using the Information Gain Attribute 
Evaluator, which ranks predictors based on their mutual 
information with the target variable. Only variables with 
high information gain were retained. This method is 
particularly suitable for clinical datasets, where irrelevant 
features can introduce noise and reduce model robustness. 
Its use is supported by recent literature on model 
optimization in healthcare AI (Noroozi et al., 2023). 

2.3 Machine learning model training 

This study implemented six widely used supervised 
machine learning (ML) classifiers to identify the most 
effective model for non-invasive detection of type 2 
diabetes mellitus (T2DM) based on electronic health 

records (EHRs). The selected models represent diverse 
algorithmic families including probabilistic, tree-based, 
margin-based, and instance-based approaches to allow 
comparative performance analysis. Each model was 
trained under different configurations, including raw and 
SMOTE-balanced datasets, as well as with and without 
temporal features and feature selection. 

a. Random forest 

Random Forest is an ensemble learning method that 
constructs multiple decision trees using random subsets of 
features and samples, aggregating their outputs via 
majority voting. It is robust to overfitting and performs 
well in high-dimensional datasets with complex, 
nonlinear relationships. In medical applications, RF has 
consistently demonstrated high accuracy and resilience to 
noise and missing values (Fawagreh & Gaber, 2020). 

b. Naïve bayes 

Naïve Bayes is a probabilistic classifier based on 
Bayes’ theorem, assuming conditional independence 
between features. Although this assumption rarely holds 
in clinical data, NB remains effective in many healthcare 
scenarios due to its simplicity, fast training time, and 
interpretability (Appasani et al., 2024). For this study, 
numerical features were discretized where appropriate to 
improve NB's performance. 

c. Support vector machine 

SVM is a margin-based classifier that seeks to find an 
optimal hyperplane separating classes in a high-
dimensional feature space. It is particularly effective in 
datasets with complex decision boundaries and performs 
well with both linear and nonlinear kernels. In chronic 
disease detection, SVM is known for its high precision 
and robustness, especially when integrated with 
appropriate feature scaling (G et al., 2025). 

d. Alternating decision tree 

ADT is an extension of traditional decision trees that 
combines decision and prediction nodes, allowing for 
multiple contributing paths in classification. It balances 
accuracy with interpretability and is especially useful in 
clinical decision support systems where transparency is 
crucial (Chen et al., 2024). 

e. Random tree 

The Random Tree model builds a single decision tree 
using random feature subsets at each node. Although less 
accurate than ensemble methods like RF, it provides a fast, 
interpretable baseline for comparison and is useful in 
evaluating the benefit of ensemble strategies. 

f. k-Nearest neighbors 

KNN is a non-parametric classifier that assigns class 
labels based on the majority class among the 𝑘	 closest 
training instances. It leverages similarity across patients 
and is effective when relevant features are well-
standardized. While computationally intensive at 
prediction time, KNN can achieve strong performance in 
clinical settings with limited feature noise and 
dimensionality reduction (Halder et al., 2024). 
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g. Hyperparameter tuning and training configuration 

Each classifier underwent hyperparameter optimization 
using grid search combined with 10-fold cross-validation. 
Parameter ranges were determined empirically based on 
literature and pilot experiments. For example, the number 
of estimators in RF ranged from 100 to 500, while SVM 
kernel types (linear, RBF) were tested along with 
regularization parameters. 

Models were trained using both the original imbalanced 
dataset and SMOTE-balanced datasets (150% and 300% 
oversampling). In addition, experiments were conducted 
with and without temporal features and feature selection, 
allowing for an ablation-style evaluation of their 
contributions. All training procedures were implemented 
using Python’s scikit-learn library (v1.3), and results were 
tracked using reproducible pipelines. 

2.4 Model validation and evaluation 

To ensure the robustness, reliability, and 
generalizability of the machine learning models 
developed in this study, a rigorous validation strategy was 
implemented. In clinical predictive modeling, model 
validation is essential to prevent overfitting and to 
evaluate performance in scenarios that approximate real-
world deployment. 

a. Cross-validation strategy 

All models were validated using a 10-fold cross-
validation approach. The dataset was partitioned into 10 
equal subsets; in each iteration, one subset was used as the 
validation set while the remaining nine were used for 
training. This process was repeated ten times, with each 
fold serving once as the validation set. The final 
performance was reported as the mean across all folds. 
This strategy mitigates variance due to random train-test 
splits and is a well-established standard in medical 
machine learning studies (Allgaier & Pryss, 2024). 

In addition, a stratified split of 80% training and 20% 
testing was performed to evaluate the final model on 
unseen data after training. Stratification ensured that the 
distribution of diabetic and non-diabetic cases was 
preserved across splits, which is particularly important in 
imbalanced clinical datasets. 

b. Handling class imbalance 

Given that only 19% of instances in the dataset were 
diabetic cases, Synthetic Minority Over-sampling 
Technique (SMOTE) was used to address class 
imbalance. SMOTE was applied at three levels (0%, 
150%, and 300%) to generate synthetic examples of the 
minority class. By augmenting the training data with 
realistic interpolations, SMOTE reduces the bias toward 
the majority class and improves sensitivity without simply 
duplicating instances. Studies have shown that SMOTE 
enhances recall and F1-score in medical classification 
tasks with limited positive samples (Hairani et al., 2024). 

c. Evaluation metrics 

Due to the imbalanced nature of the dataset and the 
clinical implications of false positives and false negatives, 
multiple evaluation metrics were used: 

• Accuracy. Measures overall correctness but can be 
misleading in imbalanced datasets. 

 𝐴𝐶𝐶 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

 (2) 

• Sensitivity (recall or true positive rate, TPR). Critical 
for minimizing false negatives, especially important in 
diabetes detection, where undetected cases may lead to 
delayed treatment (Gurcan & Soylu, 2024). 

 𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

 (3) 

• Specificity (true negative rate, TNR). Helps ensure that 
non-diabetic individuals are not misclassified, reducing 
unnecessary clinical intervention. 

 𝑇𝑁𝑅 = 𝑇𝑁
𝑇𝑁+𝐹𝑃

 (4) 

• Precision (positive predictive value, PPV). Reflects the 
proportion of predicted diabetic cases that are actually 
correct. 

 𝑃𝑃𝑉 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

 (5) 

• F1-Score. Balances the trade-off between sensitivity 
and precision, particularly useful for imbalanced 
classes. 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 𝑃𝑃𝑉×𝑇𝑃𝑅
𝑃𝑃𝑉+𝑇𝑃𝑅

 (6) 

• AUC-ROC (area under the receiver operating 
characteristic curve). AUC quantifies the model’s 
ability to distinguish between diabetic and non-diabetic 
cases across various thresholds. AUC is widely adopted 
in clinical ML evaluation as it remains unaffected by 
class distribution and provides an aggregate view of 
model discrimination capability (Diallo et al., 2025). 
All metrics were computed for each SMOTE 

configuration and model variant (with and without 
temporal features and feature selection), providing a 
comprehensive view of model behavior under different 
conditions. 

3. Results and Discussion 
This section presents the performance of six machine 

learning models under various configurations, based on 
10-fold cross-validation results. The models were 
evaluated using AUC, sensitivity, and specificity metrics, 
as detailed in Table 2 and Table 3. 

3.1 AUC performance across models and 
configurations  

As shown in Table 2, random forest (RF) consistently 
achieved the highest AUC across all SMOTE levels. The 
best AUC performance was recorded at 150% SMOTE 
with original data (OD), yielding 88.45%, followed 
closely by RF at 300% SMOTE (88.20%). RF also 
remained stable across data configurations with temporal 
features (TF) and feature selection (FS), indicating its 
robustness. 

Support vector machine (SVM) demonstrated 
significant improvement in AUC when class balancing 
was applied. The AUC increased from 67.59% (OD, 0% 
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SMOTE) to 77.27% (OD, 300% SMOTE), and further 
improved to 71.69% under the OD+TF+FS configuration, 
despite the smaller impact from temporal features. These 
results suggest that SVM is highly responsive to balanced 
data but less affected by additional engineered features. 

Naïve bayes (NB) exhibited stable AUC performance 
in the 83–84% range under 0% SMOTE but declined 
under oversampling, particularly at 150% (e.g., 74.78%, 
OD) and 300% (e.g., 72.95%, OD). This performance 
drop is likely due to the synthetic variance introduced by 
SMOTE, which may distort probability assumptions in 
NB. 

KNN and ADT models produced modest AUC values, 
generally ranging from 63% to 66%, but remained more 
consistent across feature variations. Random tree (RT) 

showed the lowest AUC overall, reflecting its known 
tendency to overfit and its lack of ensemble robustness. 

3.2 Sensitivity and specificity trade-off 

As summarized in Table 3, RF not only yielded the 
highest AUC but also maintained excellent specificity 
across most configurations, up to 99.26% (OD, 0% 
SMOTE), with relatively low sensitivity (14.19% in the 
same setting). However, sensitivity improved markedly 
with SMOTE, reaching 40.45% (OD, 300% SMOTE), 
albeit with a slight decline in specificity (95.31%). This 
aligns with prior findings that RF favors specificity unless 
class imbalance is directly addressed (Zhu et al., 2018).

Table 2. Area under the curve (AUC) results from 10-fold cross-validation across SMOTE levels and feature 
configurations. 

AUC (%) 

SMOTE DATA RF NB SVM ADT RT KNN 
0% OD 87.38 83.56 67.59 83.81 63.11 66.48 

OD+TF 87.13 83.54 67.93 83.80 64.66 65.01 
OD+TF+FS 87.52 83.72 67.76 83.80 65.17 65.61 

150% 

OD 88.45 74.78 75.66 83.14 64.29 64.64 

OD+TF 87.32 73.77 68.38 82.81 62.95 61.62 
OD+TF+FS 87.52 81.45 69.71 83.37 65.59 63.83 

300% 

OD 88.20 72.95 77.27 82.55 64.37 65.68 

OD+TF 87.13 70.72 68.94 81.71 63.17 61.70 

OD+TF+FS 87.24 81.03 71.69 82.50 65.05 64.10 
This table presents the AUC values (in percentage) for six machine learning classifiers: random forest (RF), naïve bayes (NB), support vector machine 
(SVM), alternating decision tree (ADT), random tree (RT), and k-nearest neighbors (KNN) evaluated using original data (OD), with and without 
temporal features (TF) and feature selection (FS). The performance is reported under three SMOTE levels: 0%, 150%, and 300%. AUC represents the 
overall discriminative ability of the models across varying thresholds, providing a robust summary of classification performance in imbalanced clinical 
data settings. 

 
Table 3. Sensitivity and specificity results (mean ± SD) from 10-fold cross-validation for all classifiers under varying 
SMOTE levels and feature settings. 

PERFORMANCE SMOTE DATA RF NB SVM ADT RT KNN 

Specificity (%) 

0% OD 99.26±0.06 78.75±0.13 97.33±0.12 95.96±0.24 87.84±0.57 92.65±0.19 
OD+TF 99.25±0.09 78.70±0.13 97.15±0.15 95.96±0.24 88.10±0.54 92.84±0.27 

OD+TF+FS 97.37±0.13 79.12±0.10 98.50±0.13 96.27±0.25 88.5±0.33 92.59±0.6 

150% OD 97.07±0.05 76.83±0.19 88.00± 0.3 87.44±0.96 82.69±0.13 85.40±0.30 

OD+TF 99.06±0.09 77.40±0.74 95.50±0.29 94.02±0.45 85.30±0.48 88.91±0.29 
OD+TF+FS 96.83 ± 0.4 83.72±0.11 93.07±0.35 91.35±0.63 84.85±0.28 85.05±0.38 

300% OD 95.31 ± 0.4 58.10±0.40 80.57±0.31 80.65±0.95 81.09±0.5 82.95±0.19 

OD+TF 98.95 ± 0.4 60.58±1.93 94.50±0.41 93.64±0.64 85.25±0.27 88.08±0.46 
OD+TF+FS 96.13 ± 0.4 84.06±0.26 89.69±0.51 88.54±0.50 84.2 ± 0.46 82.96±0.12 

Sensitivity (%) 

0% OD 14.19±0.29 67.98±2.26 35.86±2.51 32.01±2.88 33.95±2.49 27.34 ± 2.49 

OD+TF 12.84±0.35 68.42±2.21 36.73±2.51 32.01±2.88 34.33±2.49 25.75 ± 2.78 

OD+TF+FS 20.5±0.59 68.67±2.09 36.28±2.55 32.01±2.88 37.15±2.86 26.31 ± 2.28 

150% OD 32.54±0.44 64.39±3.10 61.34±2.33 51.55±3.65 43.77±2.96 41.88 ± 2.80 

OD+TF 16.31±0.32 62.89±3.08 39.28±3.14 36.41±4.22 37.07±3.63 31.97 ± 2.97 

OD+TF+FS 29.45±0.31 58.17±2.38 44.37±2.43 43.47±4.09 42.22±3.16 40.80 ± 2.32 

300% OD 40.45±0.51 76.08±2.57 72.00±2.38 63.58±3.31 45.69±2.86 46.27 ± 2.81 
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PERFORMANCE SMOTE DATA RF NB SVM ADT RT KNN 
OD+TF 16.31±0.73 69.89±3.02 41.39±3.39 33.56±4.57 36.93±3.39 33.02 ± 2.77 

OD+TF+FS 31.55±0.47 57.98±2.73 53.70±2.68 50.38±3.07 41.85±2.77 43.41 ± 2.56 
This table reports the average sensitivity and specificity values (in percentage, with standard deviation) for six classifiers under the same experimental 
settings as Table 2. Sensitivity indicates the model’s ability to correctly identify diabetic cases, while specificity reflects its accuracy in identifying non-
diabetic individuals. Results are organized across three SMOTE levels (0%, 150%, and 300%) and three data configurations (OD, OD+TF, OD+TF+FS). 
This table highlights the trade-offs between sensitivity and specificity, and the influence of oversampling and feature engineering on class-specific 
prediction performance. 
 

SVM displayed the greatest sensitivity improvement, 
jumping from 35.86% (OD, 0%) to 72.00% (OD, 300%), 
with corresponding specificity declining from 97.33% to 
80.57%. This illustrates the classic trade-off between 
recall and precision in imbalanced settings, where 
oversampling improves minority detection but may 
introduce false positives (Ilham et al., 2024). 

NB had the highest baseline sensitivity, achieving 
67.98% (OD, 0%), but its specificity remained lower 
(78.75%), particularly under aggressive SMOTE 
(58.10%, OD, 300%). ADT and RT achieved balanced 
metrics under moderate oversampling but lagged in 
sensitivity, generally not exceeding 63.58% (ADT, OD, 
300%). 

Interestingly, temporal features did not universally 
improve sensitivity. For instance, RF and SVM had better 
performance without TF in many SMOTE settings, while 
KNN and ADT gained marginal benefit from TF and FS. 
This suggests that the value of engineered features is 
model-dependent, and their effectiveness may vary based 
on model architecture and class distribution. 

3.3 Clinical relevance and implications 

From a clinical perspective, high sensitivity is crucial to 
reduce undiagnosed cases of T2DM, especially in primary 
detection scenarios. While RF offers the best balance 
between specificity and AUC, SVM may be preferable 
when recall is the priority such as in early-risk alerts or 
population-level detection systems. However, caution is 
warranted due to the corresponding drop in specificity and 
the risk of overdiagnosis. 

Models such as ADT and RT, despite their lower 
performance, offer greater interpretability, which can 
support clinician trust and explainable AI integration. 
Meanwhile, KNN's reliance on patient similarity metrics 
may be useful in cohort-matching applications, though 
computational cost remains a concern. 

Overall, these findings support the feasibility of 
implementing non-invasive, EHR-based predictive 
models using open-access datasets and widely available 
ML techniques. Careful tuning of class balancing and 
feature engineering is essential to adapt models to specific 
clinical contexts. 

5. Conclusion 
This study proposed a machine learning-based 

framework for the early and non-invasive detection of 
type 2 diabetes mellitus (T2DM) using structured 
electronic health record (EHR) data. By combining 
temporal health features, feature selection, and synthetic 
class balancing (SMOTE), six widely used classifiers 
were evaluated to identify the most effective predictive 
model. Random Forest (RF) achieved the highest area 

under the curve (AUC) and specificity, while Support 
Vector Machine (SVM) showed the greatest improvement 
in sensitivity under aggressive oversampling. 

Temporal feature engineering, particularly trends in 
BMI, blood pressure, and weight significantly enhanced 
model sensitivity in SVM, KNN, and ADT classifiers. 
Feature selection using information gain further improved 
generalizability and reduced redundancy, particularly 
benefiting distance- and probability-based models. The 
experiments also revealed that the effectiveness of these 
enhancements was model-specific, highlighting the need 
for tailored configurations based on clinical priorities such 
as sensitivity or interpretability. 

The proposed framework demonstrates that predictive 
detection for T2DM is feasible using routinely collected 
EHR data, even in the absence of invasive laboratory 
markers. This can support population-level risk 
stratification and early intervention, especially in low-
resource healthcare environments. Future research should 
focus on validating the models using external datasets, 
improving explainability, and integrating the system into 
real-world clinical workflows for broader adoption. 
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