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Abstract: Efficient route optimization is essential in healthcare and logistics systems, 
where real-time decision-making significantly affects operational effectiveness. This paper 
introduces a lightweight implementation of a genetic algorithm (GA) in JavaScript, 
designed to solve the shortest route problem as a variant of the Traveling Salesman Problem 
(TSP). The algorithm operates entirely in the browser console, demonstrating the potential 
of client-side computation for fast, portable optimization. The GA framework integrates 
tournament selection, two-point ordered crossover, and swap mutation to evolve route 
solutions over 200 generations. Tested on a synthetic 11-city dataset, the algorithm achieved 
near-optimal performance with an average deviation of 4.28% from the known optimum 
and an average runtime of 1.26 seconds. Convergence occurred around generation 138 
across five independent runs, indicating stable and consistent behavior despite stochastic 
initialization. While no graphical user interface was developed in this study, the use of 
native JavaScript allows future integration with interactive web applications and mobile 
dashboards. Comparative references suggest the algorithm performs competitively with 
existing metaheuristics under similar problem sizes. These findings highlight the feasibility 
of browser-based optimization as a foundation for accessible, real-time routing tools in 
decentralized healthcare and transport settings. 
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1. Introduction 
Efficient route optimization plays a vital role in smart 

transport systems and healthcare logistics, particularly in 
time-sensitive operations such as emergency medical 
services, mobile clinic scheduling, and last-mile delivery 
of medical supplies. In these scenarios, determining the 
shortest and most efficient route can lead to significant 
improvements in cost-efficiency, response time, and 
overall service quality (Sulemana et al., 2019). Traditional 
algorithms such as Dijkstra and A* are commonly used 
for shortest path problems; however, they often struggle 
to scale in highly complex or dynamic environments due 
to their deterministic nature and computational overhead 
(Prabhath et al., 2023). 

Metaheuristic approaches, particularly Genetic 
Algorithms (GAs), have gained attention as robust 
alternatives for tackling large-scale optimization 
problems. GAs simulate evolutionary processes—natural 
selection, crossover, and mutation—to explore diverse 
solutions within large search spaces, making them well-
suited for combinatorial problems like the Traveling 
Salesman Problem (TSP) (Patni & Sharma, 2024). Several 
studies have demonstrated the effectiveness of GAs in 
logistics and routing contexts, especially when hybridized 
with local search methods or multi-objective optimization 
strategies (Akram & Habib, 2023). 

Despite the prevalence of GA implementations in 
Python, Java, or C++, JavaScript remains underutilized in 
scientific computing. Its platform independence, browser 
compatibility, and asynchronous capabilities offer a 
promising foundation for lightweight, client-side 
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optimization routines. Leveraging JavaScript for 
evolutionary computation enables direct execution within 
browser environments, potentially reducing deployment 
barriers in decentralized or mobile contexts (Ferreira et 
al., 2022; Odeniran et al., 2024). 

This study proposes a JavaScript-based genetic 
algorithm framework to solve the shortest route problem 
in a simulated, browser-native environment. Rather than 
presenting a complete application interface, the 
implementation focuses on validating the computational 
feasibility and performance of a GA under client-side 
constraints. By combining evolutionary heuristics with 
web-based execution models, this work aims to establish 
a baseline for future integration into intelligent transport 
and healthcare logistics platforms. 

The remainder of this paper is structured as follows. 
Section 2 outlines the proposed methodology and genetic 
algorithm design. Section 3 details the JavaScript-based 
implementation and experimental setup. Section 4 
presents the results and performance evaluation, followed 
by a comprehensive analysis. Finally, Section 5 concludes 
the paper by highlighting key findings, limitations, and 
directions for future research, including interface 
integration and comparative benchmarking. 

2. Methodology 
This section outlines the genetic algorithm (GA) 

framework designed to solve the shortest route problem, 
formulated as a variant of the symmetric Traveling 
Salesman Problem (TSP). The algorithm is implemented 
entirely in JavaScript to ensure real-time, web-based 
deployment, enabling lightweight execution in resource-
constrained or mobile environments. The methodology 
comprises four main stages: problem encoding, fitness 
evaluation, genetic operators, and algorithm execution. 

2.1 Problem representation and fitness evaluation 

Let 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}  denote a set of n cities, each 
defined by 2D coordinates (𝑥𝑖 , 𝑦𝑖). A solution (route) is 
represented as a permutation 𝑅 = 〈𝑐𝜋(1), 𝑐𝜋(2), … , 𝑐𝜋(𝑛)〉 , 
where π is a permutation of the indices {1,2, . . . , 𝑛}.  

The total distance 𝐷(𝑅) of route 𝑅 is computed as Eq. 
(1). 

 
𝐷(𝑅) = ∑ 𝑑(𝑐𝜋(𝑖), 𝑐𝜋(𝑖+1)) + 𝑑(𝑐𝜋(𝑛), 𝑐𝜋(1))

𝑛−1
𝑖=1  (1) 

 
where the pairwise distance 𝑑(𝑐 𝑖, 𝑐𝑗)  is calculated 

using the Euclidean distance formula is an Eq. (2). 
 

𝑑(𝑐𝑖 , 𝑐𝑗) = √(𝑥𝑖 − 𝑥𝑗)
2 + (𝑦𝑖 − 𝑦𝑗)

2 (2) 
 
To facilitate maximization in the GA framework, the 

fitness function 𝑓 (𝑅) is defined as the inverse of the total 
distance as in Eq. (3). 

 
𝑓 (𝑅) = 1

𝐷(𝑅)
 (3) 

 
This ensures that routes with shorter distances yield 

higher fitness scores, directing the evolutionary process 
toward optimal solutions. 

2.2 Population initialization and encoding 

The algorithm begins by generating an initial 
population 𝑃0  of 𝑁 = 100  individuals, each 
representing a randomly shuffled permutation of cities. 
This diversity at initialization is essential for broad 
coverage of the solution space, avoiding early 
convergence and enabling exploration of multiple local 
optima. 

Each individual is encoded as a JavaScript array of city 
indices. This representation naturally aligns with 
permutation-based problems and allows efficient 
manipulation through built-in language constructs such as 
array shuffling and slicing. 

2.3 Genetic operator 

The evolutionary process progresses through 𝐺 = 200 
generations, where each generation consists of three main 
genetic operations: selection, crossover, and mutation. 

a) Tournament selection 

To form the mating pool, tournament selection is 
applied. For each selection event, a subset 𝑇 ⊆ 𝑃  of 𝑘 =
5 individuals is randomly chosen, and the individual with 
the highest fitness in 𝑇  is selected as a parent. This 
balances exploitation of high-quality individuals with 
preservation of genetic diversity. 

b) Crossover operator 

Crossover is applied with a probability 𝑝𝑐 = 0.70 . The 
algorithm uses two-point ordered crossover, a standard 
technique for permutation problems: 
1. Two crossover points iii and jjj are randomly selected 
(1 ≤ 𝑖 < 𝑗 ≤ 𝑛1). 

2. The segment [𝑐𝑖 , … , 𝑐𝑗]from parent 1 is preserved. 
3. Remaining cities are filled from parent 2 in the order 

they appear, skipping duplicates. 
This operator ensures the offspring inherits partial 

structure from both parents while maintaining a valid tour. 

c) Mutation Operator 

Mutation is applied with a probability 𝑝𝑚 = 0.05 . A 
swap mutation is performed by randomly selecting two 
positions i and j in the individual and exchanging the 
corresponding cities as in Eq. (4). 

 
𝑅′ = 𝑠𝑤𝑎𝑝(𝑅, 𝑖, 𝑗) (4) 
 
This minor alteration helps the algorithm escape local 

optima and maintain population diversity. 

2.4 Stopping criteria and parameter justification 

The algorithm terminates after 𝐺 = 200 generations. 
This static criterion was chosen based on preliminary 
experiments, where convergence typically occurred 
before the 150th iteration. Parameter values—population 
size, crossover and mutation rates—were selected through 
empirical tuning and are consistent with values reported 
in related studies (Akram & Habib, 2023; Patni & Sharma, 
2024). 
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2.5 JavaScript based implementation 

The algorithm was implemented in native JavaScript to 
support client-side execution and seamless integration 
into web-based applications. The following key 
components were developed: 
• distance(city1, city2): Computes Euclidean 

distance between two cities. 
• totalDistance(route): Computes total path 

length. 
• crossover(parent1, parent2): Applies two-

point ordered crossover. 
• mutate(route): Performs swap mutation. 
• geneticAlgorithm(): Orchestrates evolution 

across generations and logs best solutions. 
This implementation enables real-time execution 

within browser environments via console-based output, 
providing a basis for future integration into interactive 
interfaces. It enables rapid deployment of optimization 
tools in settings such as mobile healthcare routing, 
dynamic logistics dashboards, or decentralized emergency 
response systems. 

3. Implementation and Experimental Setup 
This section outlines the implementation strategy and 

experimental configuration used to evaluate the proposed 
genetic algorithm (GA) for route optimization. The 
algorithm was developed using native JavaScript and 
executed within a browser environment to demonstrate its 
applicability in lightweight, real-time scenarios. All 
experiments were conducted under consistent system 
settings to ensure reproducibility and validity of results. 

3.1 Dataset 

Table 1. Coordinates of the cities used in the experimental 
setup.  

CITY X-COORDINATE X-COORDINATE 

P1 11.5 1.4 

P2 13.0 3.2 
P3 11.8 4.3 

P4 11.7 5.9 

P5 11.6 7.8 
P6 11.3 8.4 

P7 10.2 6.3 

P8 9.8 8.4 

P9 8.5 7.5 
P10 4.0 5.5 

P11 4.1 5.1 
 
The experimental evaluation utilized a synthetically 

generated dataset comprising 11 cities. Each city was 
assigned a two-dimensional coordinate, as shown in Table 
1. This configuration models a moderate-scale route 
planning scenario representative of healthcare logistics 
tasks, such as mobile clinic routing or medical supply 
delivery across distributed locations. 

Each coordinate pair represents a spatial node in a two-
dimensional Euclidean space, enabling direct computation 
of inter-city distances using standard geometric metrics. 

3.2 System design and implementation 

The proposed genetic algorithm was implemented 
using JavaScript ES6 syntax, taking advantage of its 
powerful array manipulation capabilities and 
asynchronous execution model. The system was 
engineered to operate entirely within a web browser's 
client-side environment, thereby eliminating the need for 
external dependencies or server-side computation and 
ensuring high portability across platforms. 

In the implementation, the system calculates the 
distance between two cities using a Euclidean metric. The 
function distance(city1, city2) computes this 
value based on the coordinates of the respective cities, 
following as Eq. (2). 

 
Fig 1. Genetic algorithm workflow for route optimization 

 
To evaluate a candidate solution, the function 

totalDistance(route) computes the cumulative 
distance of a complete tour, including the return to the 
starting point, which serves as the objective function 
minimized by the algorithm. At the initialization stage, the 
function randomRoute() generates a randomized 
sequence of city visits, forming the initial population of 
potential solutions. This step ensures sufficient diversity 
within the search space from the outset. 

During the evolutionary cycle, the algorithm applies 
genetic operators to improve solution quality over 
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successive generations. The crossover operation is 
performed using a two-point ordered crossover technique, 
implemented in the crossover(parent1, 
parent2) function, which ensures that resulting 
offspring maintain valid and non-redundant routes. To 
introduce controlled variation, the algorithm invokes the 
mutate(route) function, which performs a swap-
based mutation by exchanging the positions of two 
randomly selected cities. This mechanism helps preserve 
diversity and prevents premature convergence to 
suboptimal solutions. 

The overall evolutionary process is orchestrated by the 
main function geneticAlgorithm(), which executes 
the selection, reproduction, crossover, and mutation 
procedures iteratively over 200 generations. The function 
continuously evaluates the fitness of individuals and 
maintains the best-performing route found during the 
evolution. Throughout execution, the system logs relevant 
metrics and visualizes progress in real time. 

Fig. 1 presents the high-level workflow of the genetic 
algorithm and illustrates how the components interact to 
evolve optimal routes over time. 

3.3 Experimental environment 

We conducted all simulations on a standard consumer-
grade computing environment to reflect practical usage 
scenarios. The experiments were executed using a 
machine equipped with an Intel Core i5-1135G7 processor 
operating at 2.40 GHz and 8 GB of RAM, running on a 
64-bit Windows 11 operating system. We deployed the 
algorithm within the Google Chrome browser (version 
117), utilizing the browser console for execution and 
HTML5 Canvas for route visualization. 

To ensure robust performance tracking, the system 
actively logged the fitness value of the best route in each 
generation. The use of browser-native rendering enabled 
real-time graphical representation of route evolution 
without relying on external libraries. To mitigate the 
influence of stochastic fluctuations inherent in 
evolutionary algorithms, we repeated each experiment 
five times using different randomly initialized seeds. This 
repetition allowed us to observe consistent performance 
trends and reduced susceptibility to outlier effects, thereby 
enhancing the statistical reliability of the experimental 
outcomes. 

3.4 Evaluation metrics 

To rigorously evaluate the performance of the proposed 
genetic algorithm (GA), we adopted a set of standard 
quantitative metrics widely used in combinatorial 
optimization studies. The total route length, denoted as L, 
was calculated as the sum of Euclidean distances between 
successive city pairs in a given tour, including the return 
path from the final city back to the starting city. Formally, 
for a tour 𝑇 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}, the total length is defined in 
Eq. (5): 

 
𝐿(𝑇) = ∑ ‖𝑐! − 𝑐!"#‖$ + ‖𝑐% − 𝑐#‖$%&#

!'#  (5) 
where ‖. ‖2 denotes the Euclidean norm. 

We defined the fitness function 𝐹 (𝑇 ) as the inverse of 
the total length as in Eq. (6). 

 
𝐹 (𝑇 ) = 1

𝐿(𝑇 )
 (6) 

 
This formulation ensures that tours with shorter lengths 

correspond to higher fitness values, thereby guiding the 
selection mechanism within the GA toward superior 
solutions. 

To evaluate convergence characteristics, we measured 
the generation of stabilization 𝐺𝑠  , defined as the earliest 
generation beyond which the best fitness value remained 
unchanged over a predefined number of successive 
generations (i.e., plateau detection). This metric reflects 
the algorithm's ability to exploit the search space 
effectively. 

We recorded the execution time 𝑡𝑒𝑥𝑒𝑐 , measured in 
seconds, as the time required to complete 200 generations. 
Timing was captured using high-resolution browser-
native timing functions, ensuring accurate measurement 
of runtime performance under the JavaScript execution 
model. 

To assess solution optimality, we computed the 
percentage deviation from the known optimal solution 𝛿, 
defined as Eq. (7). 

 
𝛿 = /(!"&(#$%

(#$%
0 × 100% (7) 

 
where 𝐿𝐺𝐴 denotes the best route length obtained by 

the GA, and 𝐿𝑜𝑝𝑡  represents the reference optimal length, 
either derived through exhaustive search (for small-scale 
instances) or from published benchmarks. 

All metrics were averaged over five independent trials 
with different random seeds to mitigate stochastic bias. 
Standard deviations were reported alongside means to 
provide insight into result variability and algorithmic 
stability. The next section presents the experimental 
outcomes and discusses the results in the context of these 
evaluation metrics. 

4. Results and Analysis 
This section presents the empirical results of the genetic 

algorithm (GA) and analyzes its performance across 
multiple runs based on the defined evaluation metrics. The 
results demonstrate the algorithm’s capability to produce 
near-optimal solutions with consistent behavior, fast 
convergence, and low computational cost in a browser-
based execution environment. 

4.1 Solution quality and optimality 

The genetic algorithm demonstrated a consistent ability 
to produce high-quality solutions across all experimental 
trials. In five independent runs, the best route lengths 
generated by the algorithm ranged within a narrow 
interval, exhibiting only minor fluctuations despite 
inherent stochasticity in the evolutionary process. The 
mean route length achieved was 26.54 units, with a 
standard deviation of ±0.05, underscoring the algorithm’s 
stability in identifying near-optimal solutions. For 
comparison, the known optimal route length, obtained 
through exhaustive enumeration of all permutations, was 
approximately 25.45 units. This resulted in an average 
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deviation from the optimal solution of 4.28%, which is 
within an acceptable threshold for heuristic approaches 
applied to combinatorial optimization problems. These 
findings indicate that the algorithm successfully balances 
exploration and exploitation, enabling it to approximate 
the global optimum with high reliability. The spatial 
configuration of the best-performing solution is illustrated 
in Fig. 2, where the optimized tour traverses all 11 cities 
in a closed loop while minimizing redundant movement 
and maintaining geometric compactness. This visual 
representation further supports the numerical results, 
emphasizing the algorithm’s effectiveness in producing 
efficient and well-structured paths within a limited 
number of generations. 

 

 
Fig 2. Optimized closed-loop route generated by the 
genetic algorithm, connecting 11 cities with minimal total 
distance in a two-dimensional Euclidean space 

4.2 Convergence behavior 

The convergence dynamics of the genetic algorithm 
demonstrate a characteristic optimization trajectory 
observed in evolutionary approaches. As illustrated in Fig. 
3, the algorithm exhibited a steep improvement in fitness 
during the initial phase, particularly within the first 50 
generations, driven by strong selective pressure and high 
genetic diversity.  

 

 
Fig 3. Convergence curve of the genetic algorithm 
averaged over five runs, showing rapid fitness 
improvement during early generations and stabilization 
near generation 138 

This phase reflects the algorithm’s capacity to rapidly 
exploit promising regions of the search space. 

Subsequently, the rate of fitness improvement gradually 
declined, indicating the transition into a fine-tuning phase 
where the population began to concentrate around locally 
optimal solutions. On average, the algorithm reached 
convergence at generation 138, beyond which the fitness 
values plateaued with negligible fluctuation, suggesting 
that the algorithm had sufficiently explored the solution 
landscape and had identified a high-quality region with no 
further significant gains. This convergence pattern 
indicates that the algorithm maintains an effective balance 
between exploration and exploitation, ensuring both early 
discovery of competitive solutions and stable refinement 
toward near-optimality in the latter stages of evolution. 

4.3 Execution time and efficiency 

We evaluated the algorithm’s computational efficiency 
by measuring the total execution time required to 
complete 200 generations in a standard browser 
environment. Across five independent runs, the algorithm 
achieved an average runtime of 1.26 seconds with a 
standard deviation of ±0.11 seconds. This result 
demonstrates that the proposed JavaScript-based 
implementation is capable of delivering near real-time 
performance for small- to medium-scale optimization 
problems. By leveraging client-side execution without 
relying on external libraries or server-side processing, the 
system maintains a lightweight footprint while ensuring 
full portability across platforms. Moreover, the algorithm 
executed consistently on consumer-grade hardware, 
indicating its suitability for integration into responsive 
web-based applications, including interactive dashboards 
and mobile healthcare platforms where computational 
resources are limited but responsiveness is essential. 

4.4 Robustness across trials 

To assess the robustness of the proposed genetic 
algorithm under stochastic initialization, we conducted 
five independent runs using different random seeds. The 
results, summarized in Table 2, show that the best route 
lengths across trials ranged from 26.47 to 26.60 units. The 
mean route length was 26.54 units, with a standard 
deviation of ±0.05. The deviation from the known optimal 
route (25.45 units) remained consistently low, averaging 
4.28% with a standard deviation of ±0.52%. In terms of 
execution efficiency, the algorithm completed 200 
generations in an average time of 1.26 seconds (±0.11), 
measured in a standard browser environment. 

These results confirm that the algorithm is resilient to 
variations in the initial population and maintains 
consistent performance across runs. This is further 
supported by the boxplot shown in Figure 4, which 
illustrates the distribution of best route lengths. The 
narrow interquartile range and absence of outliers indicate 
high stability and repeatability. Collectively, the statistical 
indicators and visual distribution patterns confirm that the 
algorithm delivers robust solutions with minimal variance, 
even when subject to the inherent randomness of 
evolutionary operations. 

 
Table 2. Summary of best solutions across five 
independent runs 
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1 26.58 4.45 1.34 

2 26.47 4.00 1.21 

3 26.54 4.28 1.27 

4 26.60 4.52 1.36 
5 26.51 4.17 1.13 

Mean 26.54 4.28 1.26 

Std. Dev. ±0.05 ±0.52 ±0.11 
 

 
Fig 4 Boxplot of best route lengths across five 
independent runs, illustrating low variance and high 
consistency in solution quality 

4.5 Comparative perspective 

Although the primary objective of this study was to 
demonstrate the feasibility and efficiency of a browser-
based genetic algorithm for route optimization, placing its 
performance in the context of related heuristic methods 
provides additional perspective. While no direct 
experimental benchmarking was conducted, reported 
results from previous studies allow for an indicative 
comparison across similar problem scales and 
experimental conditions. 

Table 3 presents a comparative summary of the 
proposed GA and two widely adopted metaheuristics—
Simulated Annealing (SA) and Ant Colony Optimization 
(ACO). The comparison includes average deviation from 
the optimal solution, estimated convergence behavior, and 
approximate execution time as reported in the respective 
studies.  

The proposed JavaScript-based GA achieved 
comparable accuracy with marginally faster execution, 
particularly suited for real-time, client-side applications. 
Simulated Annealing demonstrates slightly lower 
computational cost, while ACO tends to converge more 
slowly but achieves marginally better deviation scores. It 
is important to note that these values are drawn from prior 
works and were not produced under identical 
experimental conditions. 

Consequently, this comparison is not intended to 
establish algorithmic superiority but rather to position the 
proposed solution within a recognized performance range. 
Future research should include standardized multi-
algorithm benchmarking on equivalent datasets to enable 
fair, quantitative comparisons across heuristic techniques 
in both offline and web-based contexts. 

 
Table 3. Comparative performance of heuristic algorithms on small-scale routing problems 

ALGORITHM AVG. DEVIATION 
(%) 

AVG. CONVERGENCE 
GENERATION 

AVG. EXECUTION 
TIME (s) 

STUDIES 

Genetic Algorithm 
(GA) 4.28 ± 0.52 ~138 1.26 ± 0.11 Our 

Simulated 
Annealing (SA) ~5.5 ~150 ~1.00 (Akram & Habib, 2023) 

Ant Colony 
Optimization (ACO) ~3.8 ~170 ~1.40 (Patni & Sharma, 2024) 

 
 

5. Conclusion and Future Work 
This study introduced a browser-executable genetic 

algorithm (GA) implemented entirely in native JavaScript 
for solving the shortest route problem, a variant of the 
Traveling Salesman Problem (TSP). The proposed 
approach demonstrated that client-side optimization is not 
only feasible but also computationally efficient, requiring 
no external libraries or server-side infrastructure. 
Designed for lightweight execution, the model targets 
potential integration into responsive web environments 
such as healthcare logistics dashboards or smart transport 
planners. 

Experimental results showed that the GA reliably 
produced near-optimal solutions, with an average 

deviation of 4.28% from the known optimum. The 
algorithm converged within approximately 138 
generations and achieved consistent execution times 
averaging 1.26 seconds in a browser environment. 
Robustness analysis confirmed low output variance across 
multiple trials, supporting the stability and repeatability of 
the algorithm under stochastic conditions. 

While the implementation validates the core 
computational framework, it does not yet include a user-
facing application or visual interface. Thus, this work is 
best characterized as a foundational step toward real-time 
route optimization in web contexts, rather than a fully 
deployed application. Its practical relevance lies in the 
demonstration that JavaScript, despite being traditionally 
limited to UI scripting, can support serious optimization 
logic within the browser. 
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Future work will focus on extending the current model 
to handle dynamic and real-world datasets, incorporating 
live inputs such as traffic data, time windows, or service 
priorities. Moreover, the development of a full-featured 
graphical user interface (GUI) will enable real-time 
interaction and visualization, paving the way for 
deployment in mobile health units, emergency response 
platforms, and other intelligent routing systems. 
Comparative benchmarking with other metaheuristic 
frameworks under standardized conditions will further 
strengthen the system's evaluative rigor and practical 
readiness. 
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