
J. Intell. Comput. Health Inform. Vol. 6, No. 1, 2025
ISSN: 2715-6923 e-ISSN: 2721-9186, pp.11~17 | DOI: 10.26714/jichi.v6i1.15777

Journal homepage: https://jurnal.unimus.ac.id/index.php/ICHI

A JavaScript-Based Genetic Algorithm for
Real-Time Route Optimization: Toward
Lightweight Web Integration in Healthcare
and Logistics

Farid Fitriyadi*, Muhammad Daffa Arzeta N
Informatics, Universitas Sahid Surakarta, Jl. Adi Sucipto No.154, Jajar, Kec. Laweyan, Kota Surakarta
57144, Indonesia
*Corresponding author: farid@usahidsolo.ac.id

Farkhod Meliev
Research Institute for the Development of Digital Technologies and Artificial Intelligence, 17A, Boz-
2, Tashkent, 100125, Uzbekistan

Abstract: Efficient route optimization is essential in healthcare and logistics systems,
where real-time decision-making significantly affects operational effectiveness. This paper
introduces a lightweight implementation of a genetic algorithm (GA) in JavaScript,
designed to solve the shortest route problem as a variant of the Traveling Salesman Problem
(TSP). The algorithm operates entirely in the browser console, demonstrating the potential
of client-side computation for fast, portable optimization. The GA framework integrates
tournament selection, two-point ordered crossover, and swap mutation to evolve route
solutions over 200 generations. Tested on a synthetic 11-city dataset, the algorithm achieved
near-optimal performance with an average deviation of 4.28% from the known optimum
and an average runtime of 1.26 seconds. Convergence occurred around generation 138
across five independent runs, indicating stable and consistent behavior despite stochastic
initialization. While no graphical user interface was developed in this study, the use of
native JavaScript allows future integration with interactive web applications and mobile
dashboards. Comparative references suggest the algorithm performs competitively with
existing metaheuristics under similar problem sizes. These findings highlight the feasibility
of browser-based optimization as a foundation for accessible, real-time routing tools in
decentralized healthcare and transport settings.

Keywords: GENETIC ALGORITHM; JAVASCRIPT-BASED OPTIMIZATION;
ROUTE PLANNING IN SMART LOGISTICS; LIGHTWEIGHT CLIENT-SIDE
COMPUTING

Journal of Intelligent Computing and Health Informatics (JICHI) is licensed under a Creative Commons Attribution-Share Alike 4.0 International License

1. Introduction
Efficient route optimization plays a vital role in smart

transport systems and healthcare logistics, particularly in
time-sensitive operations such as emergency medical
services, mobile clinic scheduling, and last-mile delivery
of medical supplies. In these scenarios, determining the
shortest and most efficient route can lead to significant
improvements in cost-efficiency, response time, and
overall service quality (Sulemana et al., 2019). Traditional
algorithms such as Dijkstra and A* are commonly used
for shortest path problems; however, they often struggle
to scale in highly complex or dynamic environments due
to their deterministic nature and computational overhead
(Prabhath et al., 2023).

Metaheuristic approaches, particularly Genetic
Algorithms (GAs), have gained attention as robust
alternatives for tackling large-scale optimization
problems. GAs simulate evolutionary processes—natural
selection, crossover, and mutation—to explore diverse
solutions within large search spaces, making them well-
suited for combinatorial problems like the Traveling
Salesman Problem (TSP) (Patni & Sharma, 2024). Several
studies have demonstrated the effectiveness of GAs in
logistics and routing contexts, especially when hybridized
with local search methods or multi-objective optimization
strategies (Akram & Habib, 2023).

Despite the prevalence of GA implementations in
Python, Java, or C++, JavaScript remains underutilized in
scientific computing. Its platform independence, browser
compatibility, and asynchronous capabilities offer a
promising foundation for lightweight, client-side

Article history :
Received: 14 JAN 2025

Accepted: 18 MAR 2025
Avalaible online: 31 MAR 2025

Research article

ISSN: 2715-6923 e-ISSN: 2721-9186

J. Intell. Comput. Health Inform. Vol. 6, No. 1, March 2025: 11-17

12

optimization routines. Leveraging JavaScript for
evolutionary computation enables direct execution within
browser environments, potentially reducing deployment
barriers in decentralized or mobile contexts (Ferreira et
al., 2022; Odeniran et al., 2024).

This study proposes a JavaScript-based genetic
algorithm framework to solve the shortest route problem
in a simulated, browser-native environment. Rather than
presenting a complete application interface, the
implementation focuses on validating the computational
feasibility and performance of a GA under client-side
constraints. By combining evolutionary heuristics with
web-based execution models, this work aims to establish
a baseline for future integration into intelligent transport
and healthcare logistics platforms.

The remainder of this paper is structured as follows.
Section 2 outlines the proposed methodology and genetic
algorithm design. Section 3 details the JavaScript-based
implementation and experimental setup. Section 4
presents the results and performance evaluation, followed
by a comprehensive analysis. Finally, Section 5 concludes
the paper by highlighting key findings, limitations, and
directions for future research, including interface
integration and comparative benchmarking.

2. Methodology
This section outlines the genetic algorithm (GA)

framework designed to solve the shortest route problem,
formulated as a variant of the symmetric Traveling
Salesman Problem (TSP). The algorithm is implemented
entirely in JavaScript to ensure real-time, web-based
deployment, enabling lightweight execution in resource-
constrained or mobile environments. The methodology
comprises four main stages: problem encoding, fitness
evaluation, genetic operators, and algorithm execution.

2.1 Problem representation and fitness evaluation

Let 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛} denote a set of n cities, each
defined by 2D coordinates (𝑥𝑖 , 𝑦𝑖). A solution (route) is
represented as a permutation 𝑅 = 〈𝑐𝜋(1), 𝑐𝜋(2), … , 𝑐𝜋(𝑛)〉 ,
where π is a permutation of the indices {1,2, . . . , 𝑛}.

The total distance 𝐷(𝑅) of route 𝑅 is computed as Eq.
(1).

𝐷(𝑅) = ∑ 𝑑(𝑐𝜋(𝑖), 𝑐𝜋(𝑖+1)) + 𝑑(𝑐𝜋(𝑛), 𝑐𝜋(1))

𝑛−1
𝑖=1 (1)

where the pairwise distance 𝑑(𝑐 𝑖, 𝑐𝑗) is calculated

using the Euclidean distance formula is an Eq. (2).

𝑑(𝑐𝑖 , 𝑐𝑗) = √(𝑥𝑖 − 𝑥𝑗)
2 + (𝑦𝑖 − 𝑦𝑗)

2 (2)

To facilitate maximization in the GA framework, the

fitness function 𝑓 (𝑅) is defined as the inverse of the total
distance as in Eq. (3).

𝑓 (𝑅) = 1

𝐷(𝑅)
 (3)

This ensures that routes with shorter distances yield

higher fitness scores, directing the evolutionary process
toward optimal solutions.

2.2 Population initialization and encoding

The algorithm begins by generating an initial
population 𝑃0 of 𝑁 = 100 individuals, each
representing a randomly shuffled permutation of cities.
This diversity at initialization is essential for broad
coverage of the solution space, avoiding early
convergence and enabling exploration of multiple local
optima.

Each individual is encoded as a JavaScript array of city
indices. This representation naturally aligns with
permutation-based problems and allows efficient
manipulation through built-in language constructs such as
array shuffling and slicing.

2.3 Genetic operator

The evolutionary process progresses through 𝐺 = 200
generations, where each generation consists of three main
genetic operations: selection, crossover, and mutation.

a) Tournament selection

To form the mating pool, tournament selection is
applied. For each selection event, a subset 𝑇 ⊆ 𝑃 of 𝑘 =
5 individuals is randomly chosen, and the individual with
the highest fitness in 𝑇 is selected as a parent. This
balances exploitation of high-quality individuals with
preservation of genetic diversity.

b) Crossover operator

Crossover is applied with a probability 𝑝𝑐 = 0.70 . The
algorithm uses two-point ordered crossover, a standard
technique for permutation problems:
1. Two crossover points iii and jjj are randomly selected
(1 ≤ 𝑖 < 𝑗 ≤ 𝑛1).

2. The segment [𝑐𝑖 , … , 𝑐𝑗]from parent 1 is preserved.
3. Remaining cities are filled from parent 2 in the order

they appear, skipping duplicates.
This operator ensures the offspring inherits partial

structure from both parents while maintaining a valid tour.

c) Mutation Operator

Mutation is applied with a probability 𝑝𝑚 = 0.05 . A
swap mutation is performed by randomly selecting two
positions i and j in the individual and exchanging the
corresponding cities as in Eq. (4).

𝑅′ = 𝑠𝑤𝑎𝑝(𝑅, 𝑖, 𝑗) (4)

This minor alteration helps the algorithm escape local

optima and maintain population diversity.

2.4 Stopping criteria and parameter justification

The algorithm terminates after 𝐺 = 200 generations.
This static criterion was chosen based on preliminary
experiments, where convergence typically occurred
before the 150th iteration. Parameter values—population
size, crossover and mutation rates—were selected through
empirical tuning and are consistent with values reported
in related studies (Akram & Habib, 2023; Patni & Sharma,
2024).

J. Intell. Comput. Health Inform. ISSN: 2715-6923 e-ISSN: 2721-9186

(Farid Fitryadi)

13

2.5 JavaScript based implementation

The algorithm was implemented in native JavaScript to
support client-side execution and seamless integration
into web-based applications. The following key
components were developed:
• distance(city1, city2): Computes Euclidean

distance between two cities.
• totalDistance(route): Computes total path

length.
• crossover(parent1, parent2): Applies two-

point ordered crossover.
• mutate(route): Performs swap mutation.
• geneticAlgorithm(): Orchestrates evolution

across generations and logs best solutions.
This implementation enables real-time execution

within browser environments via console-based output,
providing a basis for future integration into interactive
interfaces. It enables rapid deployment of optimization
tools in settings such as mobile healthcare routing,
dynamic logistics dashboards, or decentralized emergency
response systems.

3. Implementation and Experimental Setup
This section outlines the implementation strategy and

experimental configuration used to evaluate the proposed
genetic algorithm (GA) for route optimization. The
algorithm was developed using native JavaScript and
executed within a browser environment to demonstrate its
applicability in lightweight, real-time scenarios. All
experiments were conducted under consistent system
settings to ensure reproducibility and validity of results.

3.1 Dataset

Table 1. Coordinates of the cities used in the experimental
setup.

CITY X-COORDINATE X-COORDINATE

P1 11.5 1.4

P2 13.0 3.2
P3 11.8 4.3

P4 11.7 5.9

P5 11.6 7.8
P6 11.3 8.4

P7 10.2 6.3

P8 9.8 8.4

P9 8.5 7.5
P10 4.0 5.5

P11 4.1 5.1

The experimental evaluation utilized a synthetically

generated dataset comprising 11 cities. Each city was
assigned a two-dimensional coordinate, as shown in Table
1. This configuration models a moderate-scale route
planning scenario representative of healthcare logistics
tasks, such as mobile clinic routing or medical supply
delivery across distributed locations.

Each coordinate pair represents a spatial node in a two-
dimensional Euclidean space, enabling direct computation
of inter-city distances using standard geometric metrics.

3.2 System design and implementation

The proposed genetic algorithm was implemented
using JavaScript ES6 syntax, taking advantage of its
powerful array manipulation capabilities and
asynchronous execution model. The system was
engineered to operate entirely within a web browser's
client-side environment, thereby eliminating the need for
external dependencies or server-side computation and
ensuring high portability across platforms.

In the implementation, the system calculates the
distance between two cities using a Euclidean metric. The
function distance(city1, city2) computes this
value based on the coordinates of the respective cities,
following as Eq. (2).

Fig 1. Genetic algorithm workflow for route optimization

To evaluate a candidate solution, the function

totalDistance(route) computes the cumulative
distance of a complete tour, including the return to the
starting point, which serves as the objective function
minimized by the algorithm. At the initialization stage, the
function randomRoute() generates a randomized
sequence of city visits, forming the initial population of
potential solutions. This step ensures sufficient diversity
within the search space from the outset.

During the evolutionary cycle, the algorithm applies
genetic operators to improve solution quality over

ISSN: 2715-6923 e-ISSN: 2721-9186

J. Intell. Comput. Health Inform. Vol. 6, No. 1, March 2025: 11-17

14

successive generations. The crossover operation is
performed using a two-point ordered crossover technique,
implemented in the crossover(parent1,
parent2) function, which ensures that resulting
offspring maintain valid and non-redundant routes. To
introduce controlled variation, the algorithm invokes the
mutate(route) function, which performs a swap-
based mutation by exchanging the positions of two
randomly selected cities. This mechanism helps preserve
diversity and prevents premature convergence to
suboptimal solutions.

The overall evolutionary process is orchestrated by the
main function geneticAlgorithm(), which executes
the selection, reproduction, crossover, and mutation
procedures iteratively over 200 generations. The function
continuously evaluates the fitness of individuals and
maintains the best-performing route found during the
evolution. Throughout execution, the system logs relevant
metrics and visualizes progress in real time.

Fig. 1 presents the high-level workflow of the genetic
algorithm and illustrates how the components interact to
evolve optimal routes over time.

3.3 Experimental environment

We conducted all simulations on a standard consumer-
grade computing environment to reflect practical usage
scenarios. The experiments were executed using a
machine equipped with an Intel Core i5-1135G7 processor
operating at 2.40 GHz and 8 GB of RAM, running on a
64-bit Windows 11 operating system. We deployed the
algorithm within the Google Chrome browser (version
117), utilizing the browser console for execution and
HTML5 Canvas for route visualization.

To ensure robust performance tracking, the system
actively logged the fitness value of the best route in each
generation. The use of browser-native rendering enabled
real-time graphical representation of route evolution
without relying on external libraries. To mitigate the
influence of stochastic fluctuations inherent in
evolutionary algorithms, we repeated each experiment
five times using different randomly initialized seeds. This
repetition allowed us to observe consistent performance
trends and reduced susceptibility to outlier effects, thereby
enhancing the statistical reliability of the experimental
outcomes.

3.4 Evaluation metrics

To rigorously evaluate the performance of the proposed
genetic algorithm (GA), we adopted a set of standard
quantitative metrics widely used in combinatorial
optimization studies. The total route length, denoted as L,
was calculated as the sum of Euclidean distances between
successive city pairs in a given tour, including the return
path from the final city back to the starting city. Formally,
for a tour 𝑇 = {𝑐1, 𝑐2, . . . , 𝑐𝑛}, the total length is defined in
Eq. (5):

𝐿(𝑇) = ∑ ‖𝑐! − 𝑐!"#‖$ + ‖𝑐% − 𝑐#‖$%&#

!'# (5)
where ‖. ‖2 denotes the Euclidean norm.

We defined the fitness function 𝐹 (𝑇) as the inverse of
the total length as in Eq. (6).

𝐹 (𝑇) = 1

𝐿(𝑇)
 (6)

This formulation ensures that tours with shorter lengths

correspond to higher fitness values, thereby guiding the
selection mechanism within the GA toward superior
solutions.

To evaluate convergence characteristics, we measured
the generation of stabilization 𝐺𝑠 , defined as the earliest
generation beyond which the best fitness value remained
unchanged over a predefined number of successive
generations (i.e., plateau detection). This metric reflects
the algorithm's ability to exploit the search space
effectively.

We recorded the execution time 𝑡𝑒𝑥𝑒𝑐 , measured in
seconds, as the time required to complete 200 generations.
Timing was captured using high-resolution browser-
native timing functions, ensuring accurate measurement
of runtime performance under the JavaScript execution
model.

To assess solution optimality, we computed the
percentage deviation from the known optimal solution 𝛿,
defined as Eq. (7).

𝛿 = /(!"&(#$%

(#$%
0 × 100% (7)

where 𝐿𝐺𝐴 denotes the best route length obtained by

the GA, and 𝐿𝑜𝑝𝑡 represents the reference optimal length,
either derived through exhaustive search (for small-scale
instances) or from published benchmarks.

All metrics were averaged over five independent trials
with different random seeds to mitigate stochastic bias.
Standard deviations were reported alongside means to
provide insight into result variability and algorithmic
stability. The next section presents the experimental
outcomes and discusses the results in the context of these
evaluation metrics.

4. Results and Analysis
This section presents the empirical results of the genetic

algorithm (GA) and analyzes its performance across
multiple runs based on the defined evaluation metrics. The
results demonstrate the algorithm’s capability to produce
near-optimal solutions with consistent behavior, fast
convergence, and low computational cost in a browser-
based execution environment.

4.1 Solution quality and optimality

The genetic algorithm demonstrated a consistent ability
to produce high-quality solutions across all experimental
trials. In five independent runs, the best route lengths
generated by the algorithm ranged within a narrow
interval, exhibiting only minor fluctuations despite
inherent stochasticity in the evolutionary process. The
mean route length achieved was 26.54 units, with a
standard deviation of ±0.05, underscoring the algorithm’s
stability in identifying near-optimal solutions. For
comparison, the known optimal route length, obtained
through exhaustive enumeration of all permutations, was
approximately 25.45 units. This resulted in an average

J. Intell. Comput. Health Inform. ISSN: 2715-6923 e-ISSN: 2721-9186

(Farid Fitryadi)

15

deviation from the optimal solution of 4.28%, which is
within an acceptable threshold for heuristic approaches
applied to combinatorial optimization problems. These
findings indicate that the algorithm successfully balances
exploration and exploitation, enabling it to approximate
the global optimum with high reliability. The spatial
configuration of the best-performing solution is illustrated
in Fig. 2, where the optimized tour traverses all 11 cities
in a closed loop while minimizing redundant movement
and maintaining geometric compactness. This visual
representation further supports the numerical results,
emphasizing the algorithm’s effectiveness in producing
efficient and well-structured paths within a limited
number of generations.

Fig 2. Optimized closed-loop route generated by the
genetic algorithm, connecting 11 cities with minimal total
distance in a two-dimensional Euclidean space

4.2 Convergence behavior

The convergence dynamics of the genetic algorithm
demonstrate a characteristic optimization trajectory
observed in evolutionary approaches. As illustrated in Fig.
3, the algorithm exhibited a steep improvement in fitness
during the initial phase, particularly within the first 50
generations, driven by strong selective pressure and high
genetic diversity.

Fig 3. Convergence curve of the genetic algorithm
averaged over five runs, showing rapid fitness
improvement during early generations and stabilization
near generation 138

This phase reflects the algorithm’s capacity to rapidly
exploit promising regions of the search space.

Subsequently, the rate of fitness improvement gradually
declined, indicating the transition into a fine-tuning phase
where the population began to concentrate around locally
optimal solutions. On average, the algorithm reached
convergence at generation 138, beyond which the fitness
values plateaued with negligible fluctuation, suggesting
that the algorithm had sufficiently explored the solution
landscape and had identified a high-quality region with no
further significant gains. This convergence pattern
indicates that the algorithm maintains an effective balance
between exploration and exploitation, ensuring both early
discovery of competitive solutions and stable refinement
toward near-optimality in the latter stages of evolution.

4.3 Execution time and efficiency

We evaluated the algorithm’s computational efficiency
by measuring the total execution time required to
complete 200 generations in a standard browser
environment. Across five independent runs, the algorithm
achieved an average runtime of 1.26 seconds with a
standard deviation of ±0.11 seconds. This result
demonstrates that the proposed JavaScript-based
implementation is capable of delivering near real-time
performance for small- to medium-scale optimization
problems. By leveraging client-side execution without
relying on external libraries or server-side processing, the
system maintains a lightweight footprint while ensuring
full portability across platforms. Moreover, the algorithm
executed consistently on consumer-grade hardware,
indicating its suitability for integration into responsive
web-based applications, including interactive dashboards
and mobile healthcare platforms where computational
resources are limited but responsiveness is essential.

4.4 Robustness across trials

To assess the robustness of the proposed genetic
algorithm under stochastic initialization, we conducted
five independent runs using different random seeds. The
results, summarized in Table 2, show that the best route
lengths across trials ranged from 26.47 to 26.60 units. The
mean route length was 26.54 units, with a standard
deviation of ±0.05. The deviation from the known optimal
route (25.45 units) remained consistently low, averaging
4.28% with a standard deviation of ±0.52%. In terms of
execution efficiency, the algorithm completed 200
generations in an average time of 1.26 seconds (±0.11),
measured in a standard browser environment.

These results confirm that the algorithm is resilient to
variations in the initial population and maintains
consistent performance across runs. This is further
supported by the boxplot shown in Figure 4, which
illustrates the distribution of best route lengths. The
narrow interquartile range and absence of outliers indicate
high stability and repeatability. Collectively, the statistical
indicators and visual distribution patterns confirm that the
algorithm delivers robust solutions with minimal variance,
even when subject to the inherent randomness of
evolutionary operations.

Table 2. Summary of best solutions across five
independent runs

ISSN: 2715-6923 e-ISSN: 2721-9186

J. Intell. Comput. Health Inform. Vol. 6, No. 1, March 2025: 11-17

16

TRIAL

BE
ST

LE

N
G

TH

𝐿)
*

D
EV

IA
TI

O
N

 (%
)

EX
EC

U
TI

O
N

 T
IM

E
(s

)

1 26.58 4.45 1.34

2 26.47 4.00 1.21

3 26.54 4.28 1.27

4 26.60 4.52 1.36
5 26.51 4.17 1.13

Mean 26.54 4.28 1.26

Std. Dev. ±0.05 ±0.52 ±0.11

Fig 4 Boxplot of best route lengths across five
independent runs, illustrating low variance and high
consistency in solution quality

4.5 Comparative perspective

Although the primary objective of this study was to
demonstrate the feasibility and efficiency of a browser-
based genetic algorithm for route optimization, placing its
performance in the context of related heuristic methods
provides additional perspective. While no direct
experimental benchmarking was conducted, reported
results from previous studies allow for an indicative
comparison across similar problem scales and
experimental conditions.

Table 3 presents a comparative summary of the
proposed GA and two widely adopted metaheuristics—
Simulated Annealing (SA) and Ant Colony Optimization
(ACO). The comparison includes average deviation from
the optimal solution, estimated convergence behavior, and
approximate execution time as reported in the respective
studies.

The proposed JavaScript-based GA achieved
comparable accuracy with marginally faster execution,
particularly suited for real-time, client-side applications.
Simulated Annealing demonstrates slightly lower
computational cost, while ACO tends to converge more
slowly but achieves marginally better deviation scores. It
is important to note that these values are drawn from prior
works and were not produced under identical
experimental conditions.

Consequently, this comparison is not intended to
establish algorithmic superiority but rather to position the
proposed solution within a recognized performance range.
Future research should include standardized multi-
algorithm benchmarking on equivalent datasets to enable
fair, quantitative comparisons across heuristic techniques
in both offline and web-based contexts.

Table 3. Comparative performance of heuristic algorithms on small-scale routing problems

ALGORITHM AVG. DEVIATION
(%)

AVG. CONVERGENCE
GENERATION

AVG. EXECUTION
TIME (s)

STUDIES

Genetic Algorithm
(GA) 4.28 ± 0.52 ~138 1.26 ± 0.11 Our

Simulated
Annealing (SA) ~5.5 ~150 ~1.00 (Akram & Habib, 2023)

Ant Colony
Optimization (ACO) ~3.8 ~170 ~1.40 (Patni & Sharma, 2024)

5. Conclusion and Future Work
This study introduced a browser-executable genetic

algorithm (GA) implemented entirely in native JavaScript
for solving the shortest route problem, a variant of the
Traveling Salesman Problem (TSP). The proposed
approach demonstrated that client-side optimization is not
only feasible but also computationally efficient, requiring
no external libraries or server-side infrastructure.
Designed for lightweight execution, the model targets
potential integration into responsive web environments
such as healthcare logistics dashboards or smart transport
planners.

Experimental results showed that the GA reliably
produced near-optimal solutions, with an average

deviation of 4.28% from the known optimum. The
algorithm converged within approximately 138
generations and achieved consistent execution times
averaging 1.26 seconds in a browser environment.
Robustness analysis confirmed low output variance across
multiple trials, supporting the stability and repeatability of
the algorithm under stochastic conditions.

While the implementation validates the core
computational framework, it does not yet include a user-
facing application or visual interface. Thus, this work is
best characterized as a foundational step toward real-time
route optimization in web contexts, rather than a fully
deployed application. Its practical relevance lies in the
demonstration that JavaScript, despite being traditionally
limited to UI scripting, can support serious optimization
logic within the browser.

J. Intell. Comput. Health Inform. ISSN: 2715-6923 e-ISSN: 2721-9186

(Farid Fitryadi)

17

Future work will focus on extending the current model
to handle dynamic and real-world datasets, incorporating
live inputs such as traffic data, time windows, or service
priorities. Moreover, the development of a full-featured
graphical user interface (GUI) will enable real-time
interaction and visualization, paving the way for
deployment in mobile health units, emergency response
platforms, and other intelligent routing systems.
Comparative benchmarking with other metaheuristic
frameworks under standardized conditions will further
strengthen the system's evaluative rigor and practical
readiness.

Author Contributions
Farid Fitryadi, Muhammad Daffa Arzeta N, and Farkhod
Meliev jointly conceived the study and structured its
methodological framework. Farid Fitryadi led the
theoretical design and served as the corresponding author,
while Muhammad Daffa Arzeta N implemented the
JavaScript-based genetic algorithm and conducted
experimental evaluations. Farkhod Meliev contributed to
the refinement of the methodology, literature
contextualization, and cross-institutional validation. All
authors contributed to manuscript drafting and revision
and approved the final version for submission.

Acknowladgements
The authors gratefully acknowledge the Department of
Informatics, Faculty of Science, Technology & Health,
Universitas Sahid Surakarta, for providing the academic
environment and technical facilities that supported the
development and experimentation of this study. The
authors also extend their appreciation to the Research
Institute for the Development of Digital Technologies and
Artificial Intelligence, Tashkent, Uzbekistan, for its
valuable academic input during the refinement of the
methodology. Constructive comments from colleagues
and reviewers are sincerely appreciated for their role in
enhancing the clarity and scholarly quality of the
manuscript.

Conflict of interest
The authors declare that there are no conflicts of interest
regarding the publication of this paper. All research
activities were conducted independently, and no financial,
commercial, or personal relationships influenced the
outcomes or interpretations presented in this study.

Code Availability
To support transparency and reproducibility, the
JavaScript code developed in this study is publicly
available at the following GitHub repository:
https://github.com/faridtriyadi/js-ga-route. The repository
contains the full implementation of the genetic algorithm,
sample datasets, and instructions for execution within a
web browser environment. Users can visualize the route
optimization process in real time and replicate the
experimental results described in this paper.

References

Akram, M., & Habib, A. (2023). Hybridizing simulated
annealing and genetic algorithms with Pythagorean fuzzy
uncertainty for traveling salesman problem optimization.
Journal of Applied Mathematics and Computing, 69(6),
4451–4497. https://doi.org/10.1007/s12190-023-01935-y

Ferreira, F., Borges, H. S., & Valente, M. T. (2022). On the
(un‐)adoption of JavaScript front‐end frameworks.
Software: Practice and Experience, 52(4), 947–966.
https://doi.org/10.1002/spe.3044

Odeniran, Q., Wimmer, H., & Du, J. (2024). Javascript
frameworks—a comparative study between react. js and
angular. js. In Interdisciplinary Research in Technology
and Management (pp. 319–327). CRC Press.

Patni, S., & Sharma, B. (2024). Genetic Algorithms for
Decision Optimization (pp. 29–39).
https://doi.org/10.4018/979-8-3693-2073-0.ch003

Prabhath, C. N., Kavitha, M., & Kalita, K. (2023). Efficiency
analysis of path-finding algorithms in a 2D grid
environment. Journal of Autonomous Intelligence, 7(2).
https://doi.org/10.32629/jai.v7i2.1284

Sulemana, A., Donkor, E. A., Forkuo, E. K., & Oduro-
Kwarteng, S. (2019). Effect of optimal routing on travel
distance, travel time and fuel consumption of waste
collection trucks. Management of Environmental Quality:
An International Journal, 30(4), 803–832.
https://doi.org/10.1108/MEQ-07-2018-0134

