
Journal of Intelligent Computing and Health Informatics (JICHI). Vol. 6, No. 1, 2025
ISSN: 2715-6923 e-ISSN: 2721-9186, pp.11~17 | DOI: 10.26714/jichi.v6i1.15777

Journal homepage: https://jurnal.unimus.ac.id/index.php/ICHI

A JavaScript-Based Genetic Algorithm for
Real-Time Route Optimization: Toward
Lightweight Web Integration in Healthcare
and Logistics

Farid Fitriyadi*, Muhammad Daffa Arzeta N
Informatics, Universitas Sahid Surakarta, Surakarta 57144, Indonesia
E-mail: daffa@gmail.com
*Corresponding author: farid@usahidsolo.ac.id

Farkhod Meliev
Research Institute for the Development of Digital Technologies and Artificial Intelligence, Tashkent,
100125, Uzbekistan
E-mail: farhodmeliev84@gmail.com

Abstract: Efficient route optimization is crucial in healthcare and logistics, where real-time
decision-making can significantly influence service delivery and operational efficiency.
This study proposes a lightweight genetic algorithm (GA) implemented entirely in native
JavaScript and executed within the browser, offering a novel, client-side solution to the
Traveling Salesman Problem (TSP). The algorithm employs tournament selection, two-
point ordered crossover, and swap mutation to evolve optimal routes across 200 generations.
Evaluated on a synthetic dataset of 11 cities, the GA achieved near-optimal results with an
average deviation of 4.28% from the known optimum and an average execution time of 1.26
seconds. Convergence was consistently observed around generation 138. Unlike
conventional implementations dependent on server-side processing or external libraries, this
browser-native approach demonstrates the feasibility of real-time optimization in
decentralized and resource-limited environments. The findings establish JavaScript’s
capability beyond user interface scripting and highlight its potential for delivering
intelligent, portable, and scalable routing tools. This work contributes to the advancement
of browser-based evolutionary computing and provides a practical foundation for web-
integrated applications in healthcare logistics, mobile service deployment, and last-mile
delivery.

Keywords: GENETIC ALGORITHM; JAVASCRIPT OPTIMIZATION; ROUTE
PLANNING; CLIENT-SIDE COMPUTING; HEALTHCARE LOGISTICS

Journal of Intelligent Computing and Health Informatics (JICHI) is licensed under a Creative Commons Attribution-Share Alike 4.0 International License

1. Introduction
Efficient route optimization plays a crucial role in smart

transport systems and healthcare logistics, particularly in
time-sensitive services such as emergency medical
dispatch, mobile clinic scheduling, and critical medical
supply delivery. In such contexts, determining the shortest
and most efficient route directly affects service quality,
operational costs, and response times (Sulemana et al.,
2019). Conventional algorithms such as Dijkstra and A*
are effective for simple networks but often struggle to
scale in complex, dynamic environments due to high
computational overhead and limited adaptability
(Prabhath et al., 2023).

To address these limitations, metaheuristic approaches
particularly genetic algorithms (GAs) have gained traction
for solving combinatorial optimization problems like the

Traveling Salesman Problem (TSP). GAs simulate
evolutionary processes, enabling flexible exploration of
large solution spaces and delivering high-quality
approximations in scenarios where exact methods are
computationally infeasible (Akram & Habib, 2023; Patni
& Sharma, 2024)

However, most existing GA implementations rely on
platforms such as Python, Java, or C++, which typically
require backend infrastructure or runtime environments
not always feasible in decentralized or mobile settings
(Dymora & Paszkiewicz, 2020; Patel & Tere, 2025). In
contrast, JavaScript is lightweight, natively supported by
all modern browsers, and ideal for client-side execution,
yet remains underutilized in optimization research
(Ferreira et al., 2022; Odeniran et al., 2024). This creates
a notable gap in the literature few studies have explored
how JavaScript-based GAs can be applied directly within

Article history :
Received: 14 JAN 2025

Accepted: 18 MAR 2025
Available online: 31 MAR 2025

Research article

ISSN: 2715-6923 e-ISSN: 2721-9186

Journal of Intelligent Computing and Health Informatics (JICHI). Vol. 6, No. 1, March 2025: 11-17

12

the browser to enable real-time, portable route
optimization without server-side dependencies.

This research addresses that gap by proposing a
browser-executable genetic algorithm implemented
entirely in native JavaScript to solve the TSP. It focuses
on evaluating the computational feasibility, convergence
behavior, and solution quality of client-side
metaheuristics in real-time settings.

Problem Statement. Traditional GAs is not optimized
for direct web deployment, creating challenges for
lightweight, on-device decision-making in resource-
constrained logistics and healthcare environments.
Therefore, this study explores how a fully browser-based
GA can deliver efficient route optimization suitable for
integration into mobile and web applications.

Objective. To design, implement, and evaluate a client-
side genetic algorithm using JavaScript that solves the
shortest route problem efficiently and reliably, with
potential applications in smart logistics and healthcare
operations.

The main contributions of this work include:
• A novel JavaScript-based GA framework for route

optimization deployable directly in the browser.
• A lightweight system architecture that enables real-time

operation without external libraries.
• Empirical evaluation demonstrating the model’s

stability, efficiency, and suitability for integration into
intelligent transport interfaces.
The remainder of this paper is structured as follows:

Section 2 describes the proposed methodology and
algorithm design. Section 3 outlines the implementation
and experimental setup. Section 4 presents the results and
performance evaluation. Section 5 concludes with
insights, limitations, and future work directions.

2. Methodology
This section presents the design of the proposed genetic

algorithm (GA) for solving the shortest route problem,
modeled as a variant of the symmetric Traveling Salesman
Problem (TSP). The algorithm is implemented entirely in
native JavaScript to support seamless client-side
deployment within web environments. The methodology
includes five core components: route encoding, fitness
evaluation, genetic operations, execution strategy, and
implementation tools.

2.1 Problem representation and fitness evaluation

Let 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛} be a set of n cities, each defined
by 2D coordinates (𝑥𝑖 , 𝑦𝑖) . A route is encoded as a
permutation 𝑅 = 〈𝑐𝜋(1), 𝑐𝜋(2), … , 𝑐𝜋(𝑛)〉 , where π is a
permutation of {1,2, . . . , 𝑛}.

The total distance 𝐷(𝑅) of route route is calculated as:

𝐷(𝑅) = ∑ 𝑑(𝑐𝜋(𝑖), 𝑐𝜋(𝑖+1)) + 𝑑(𝑐𝜋(𝑛), 𝑐𝜋(1))
𝑛−1
𝑖=1 (1)

where 𝑑(𝑐𝑖, 𝑐𝑗) is the Euclidean distance:

𝑑(𝑐𝑖 , 𝑐𝑗) = √(𝑥𝑖 − 𝑥𝑗)
2 + (𝑦𝑖 − 𝑦𝑗)

2 (2)

To transform this into a maximization problem suitable
for GA, the fitness function 𝑓 (𝑅) is defined as the
inverse of the total route distance:

𝑓 (𝑅) = 1
𝐷(𝑅)

 (3)

This formulation ensures that shorter routes yield
higher fitness values.

2.2 Population initialization and encoding

The initial population 𝑃0 of 𝑁 = 100 individuals,
each representing a randomly shuffled sequence of city
indices. This approach maintains solution diversity, which
is critical to avoiding premature convergence.

Each individual is encoded as a JavaScript array (e.g
[0, 3, 1, …, n-1]), leveraging built-in array
manipulation methods such as .splice(), .sort(),
and .slice() for efficient computation.

2.3 Genetic operator

The GA evolves over 𝐺 = 200 generations using three
standard operations: selection, crossover, and mutation.

a) Tournament selection

For each selection, 𝑘 = 5 individuals are sampled
randomly, and the fittest among them is chosen as a
parent. This method balances exploration and exploitation
while maintaining genetic diversity.

b) Two-point ordered crossover

With a crossover probability 𝑝𝑐 = 0.70, two crossov
er points 𝑖 and 𝑗 are selected randomly (where 1 ≤ 𝑖
< 𝑗 ≤ 𝑛 − 1). A segment from Parent 1 is preserved,
and the remaining genes are filled in order from Par
ent 2, skipping duplicates to maintain a valid permut
ation.

c) Swap mutation

With a mutation probability 𝑝𝑚 = 0.05, two positions 𝑖
i and 𝑗 j in the route are randomly chosen, and their values
are swapped:

𝑅′ = 𝑠𝑤𝑎𝑝(𝑅, 𝑖, 𝑗) (4)

This lightweight mutation helps prevent premature
convergence and maintains search variability.

2.4 Stopping criteria and parameter settings

The algorithm stops after a fixed number of generations
𝐺 = 200. This value was empirically chosen based on
pilot testing where convergence generally occurred before
generation 150.

Parameter settings (e.g., population size,
crossover/mutation rates) follow values commonly used
in TSP-related GA research (Akram & Habib, 2023; Patni
& Sharma, 2024).

2.5 JavaScript based implementation

The genetic algorithm was implemented using modern
JavaScript (ES6), designed to run natively in a browser
console. The system includes the following key functions:
• distance(city1, city2): Computes Euclidean

distance.
• totalDistance(route): Calculates total tour

length.
• crossover(parent1, parent2): Performs

Journal of Intelligent Computing and Health Informatics (JICHI). ISSN: 2715-6923 e-ISSN: 2721-9186

(Farid Fitryadi)

13

two-point ordered crossover.
• mutate(route): Executes swap mutation.
• geneticAlgorithm(): Controls the evolution

loop and logs the best result.
This implementation enables lightweight, real-time

route optimization directly in the browser—supporting
web integration in resource-constrained or mobile
settings.

3. Implementation and Experimental Setup
This section details the implementation strategy and

experimental design used to evaluate the proposed
JavaScript-based genetic algorithm for real-time route
optimization. The primary objective is to assess the
algorithm's performance in a browser-native environment
using a synthetic dataset.

3.1 Dataset

The experimental evaluation utilized a synthetically
generated dataset consisting of 11 cities, each defined by
a pair of two-dimensional coordinates. This dataset
simulates a mid-scale routing scenario relevant to mobile
healthcare logistics or decentralized supply distribution.
Table 1 presents the coordinates of each city.

Table 1. Coordinates of the cities used in the experiment.
CITY X-COORDINATE X-COORDINATE

P1 11.5 1.4

P2 13.0 3.2
P3 11.8 4.3

P4 11.7 5.9

P5 11.6 7.8
P6 11.3 8.4

P7 10.2 6.3

P8 9.8 8.4

P9 8.5 7.5
P10 4.0 5.5

P11 4.1 5.1
All coordinates lie in a 2D Euclidean space, enabling

accurate calculation of pairwise distances using the metric
defined in Eq. (2).

3.2 System design and implementation

The GA was developed using JavaScript ES6 and
executed entirely within a standard web browser. This
design eliminates the need for server-side computation,
ensuring portability and enabling deployment in resource-
limited environments.

Key components of the implementation include:
• Distance computation using the distance(city1,
city2) function.

• Route evaluation using totalDistance(route)
to calculate the full tour length including the return trip.

• Population generation through randomized
permutations of cities.

• Crossover via crossover(parent1, parent2)
using a two-point ordered method.

• Mutation through mutate(route) using random
index swapping.

• Main loop in geneticAlgorithm(), which
manages population evolution, fitness evaluation, and
logging of the best solution over 200 generations.
Fig. 1 illustrates the workflow of the implemented

genetic algorithm.

Fig 1. Workflow of the proposed genetic algorithm for
browser-based route optimization.

3.3 Experimental environment

All experiments were conducted on a consumer-grade
laptop with an Intel Core i5-1135G7 (2.40 GHz), 8 GB
RAM, running Windows 11 (64-bit). The GA was
executed in Google Chrome (v117), using the browser
console for logging and HTML5 Canvas for route
visualization.

Each test was repeated five times using different
random seeds to account for stochastic variation and
ensure statistical robustness.

3.4 Evaluation metrics

To measure performance, the following evaluation
metrics were applied:
• Total route length L(T), calculated using:

𝐿(𝑇) = ∑ ‖𝑐𝑖 − 𝑐𝑖+1‖2 + ‖𝑐𝑛 − 𝑐1‖2
𝑛−1
𝑖=1 (5)

• Fitness function F(T) as the inverse of L(T):

𝐹 (𝑇) = 1
𝐿(𝑇)

 (6)

ISSN: 2715-6923 e-ISSN: 2721-9186

Journal of Intelligent Computing and Health Informatics (JICHI). Vol. 6, No. 1, March 2025: 11-17

14

• Convergence generation 𝐺𝑠 defined as the generation
after which no fitness improvement is observed over
several consecutive iterations.

• Execution time 𝑡𝑒𝑥𝑒𝑐 , measured in seconds using
browser-native high-resolution timers.

• Deviation from optimal 𝛿 , computed as:

𝛿 = (
𝐿𝐺𝐴−𝐿𝑜𝑝𝑡

𝐿𝑜𝑝𝑡
) × 100% (7)

where 𝐿𝐺𝐴 is the best solution found by the algorithm
and 𝐿𝑜𝑝𝑡 is the optimal route length derived through
exhaustive permutation search.
All metrics were reported as averages over five

independent runs, along with standard deviations to
indicate result stability.

4. Results and Analysis
This section presents the empirical findings from the

experimental evaluation of the proposed genetic algorithm
(GA) and provides a comprehensive analysis based on
accuracy, convergence behavior, execution time, and
robustness.

4.1 Solution quality and optimality

The proposed genetic algorithm (GA) demonstrated a
high degree of consistency and reliability in producing
near-optimal solutions across multiple independent trials.
Across five experimental runs, the best route lengths were
closely clustered, with a mean of 26.54 units and a
standard deviation of ±0.05, indicating strong stability and
low sensitivity to random initialization.

By comparison, the reference optimal route length—
obtained through exhaustive permutation search—was
approximately 25.45 units. The resulting average
deviation of 4.28% confirms the GA’s capacity to
effectively explore the solution space and converge
toward competitive solutions within a practical
computational budget.

This level of deviation is well within the accepted
threshold for metaheuristic approaches addressing NP-
hard problems such as the Traveling Salesman Problem
(TSP), particularly in constrained execution environments
like web browsers.

These findings validate the algorithm’s ability to
maintain a balance between exploration and exploitation,
and confirm its robustness for lightweight, real-time
applications in healthcare and logistics.

The optimized route produced by the best-performing
individual is visualized in Fig. 2, which illustrates a
closed-loop path traversing all 11 cities while minimizing
redundant movement. The geometric compactness and
logical traversal order observed in the route reflect the
algorithm’s capability to generate efficient, interpretable
solutions with minimal overhead.

4.2 Convergence behavior

As illustrated in Fig. 3, the genetic algorithm (GA)
demonstrated a typical yet effective convergence
trajectory, reflecting its evolutionary design. The most
substantial increase in fitness occurred during the first 50
generations, driven by high initial diversity and strong

selection pressure. This rapid ascent indicates the
algorithm’s ability to quickly identify and exploit
promising regions of the solution space.

Fig 2. Optimized route generated by the proposed GA
connecting 11 cities. The path demonstrates compactness
and minimal detours, consistent with the objective of
minimizing total distance.

Fig 3. Average convergence curve over five independent
runs, showing steep fitness gain followed by stabilization
near generation 138.

Following this early phase, the algorithm entered a
refinement stage, during which improvements became
more incremental. On average, convergence stabilized
around generation 138, with the best fitness values
remaining consistent thereafter. This plateau indicates that
the algorithm had effectively converged to a high-quality
local optimum, with minimal risk of further improvement.

Crucially, this convergence pattern highlights the
algorithm’s ability to balance exploration and
exploitation. Early exploration enables discovery of
diverse candidate solutions, while later exploitation
allows for precision refinement without premature
stagnation. Such balance is essential in real-time, browser-
based applications where computational efficiency and
robustness are equally important.

These findings underscore the GA’s capability to
deliver reliable, timely, and near-optimal solutions,
making it well-suited for resource-constrained
environments such as mobile health logistics and smart
transport platforms.

4.3 Execution time and efficiency

Journal of Intelligent Computing and Health Informatics (JICHI). ISSN: 2715-6923 e-ISSN: 2721-9186

(Farid Fitryadi)

15

The genetic algorithm successfully completed all 200
generations in an average of 1.26 seconds (±0.11), as
measured using high-resolution browser timing APIs in
Google Chrome on a mid-range laptop (Intel i5, 8 GB
RAM). This performance confirms the real-time readiness
of the proposed solution, particularly for deployment in
time-critical environments such as emergency route
planning and mobile healthcare service allocation.

Unlike conventional implementations written in Python
or Java, which often depend on backend infrastructure,
server processes, or third-party libraries, this algorithm
runs entirely on the client-side using vanilla JavaScript,
requiring no installation or server configuration. This
significantly reduces latency, eliminates network
dependency, and supports instantaneous execution across
heterogeneous devices, including tablets, smartphones, or
low-power embedded terminals.

Furthermore, the use of a browser-based platform
streamlines system integration with modern web
dashboards and IoT-enabled healthcare platforms. Its
minimal resource consumption enables parallel usage by
multiple users without centralized server bottlenecks
making it particularly suitable for decentralized
environments, such as rural clinics, mobile health units,
and distributed supply chains.

From an engineering standpoint, the sub-second
execution time for medium-scale instances (11 nodes)
demonstrates that the algorithm offers a pragmatic trade-
off between optimization depth and computational
efficiency. This positions the solution not only as a
research prototype but also as a practical, deployable tool
for real-world logistics and healthcare applications that
demand low-latency decision support.

4.4 Robustness across trials

The genetic algorithm (GA) exhibited high robustness
and stability across multiple independent trials, as
summarized in Table 2. Despite the inherent stochastic
nature of evolutionary computation, the algorithm
consistently generated high-quality solutions with
minimal deviation in both route length and execution time.

Table 2. Best results from five independent runs.

TRIAL
BEST

LENGTH
𝐿!"

DEVIATION
(%)

EXECUTION
TIME (s)

1 26.58 4.45 1.34
2 26.47 4.00 1.21

3 26.54 4.28 1.27

4 26.60 4.52 1.36

5 26.51 4.17 1.13

Mean 26.54 4.28 1.26

Std. Dev. ±0.05 ±0.52 ±0.11
As shown in Fig. 4, the distribution of best route lengths

across five independent trials exhibits a narrow
interquartile range, with no statistical outliers. This
reinforces the conclusion that the algorithm consistently
converges toward high-performing solutions, irrespective
of initial randomization.

This degree of consistency is especially important for
real-world deployments, where repeatability and
reliability are critical, particularly in time-sensitive
domains such as emergency healthcare logistics or urban
delivery systems. The low standard deviation (±0.05 units
in length, ±0.11 seconds in time) indicates that the
algorithm is not only effective but also dependable,
capable of producing stable outcomes even in dynamic or
constrained execution environments.

Moreover, this robustness supports scalability: future
deployments involving larger city sets or dynamic input
changes (e.g., traffic congestion, road closures) could
expect similarly stable behavior, provided proper tuning
of parameters is maintained.

Fig 4 Boxplot of best route lengths across five runs,
demonstrating low variance and high consistency.

4.5 Comparative perspective

Although the primary goal of this study was to validate
the feasibility of a browser-native genetic algorithm (GA)
for real-time route optimization, contextualizing its
performance alongside established metaheuristic methods
provides important insight into its practical
competitiveness and applicability.

Table 3 summarizes indicative comparisons between
the proposed GA and two well-known heuristics—
Simulated Annealing (SA) and Ant Colony Optimization
(ACO)—based on reported literature benchmarks for
similar problem sizes. The comparison includes average
deviation from the known optimum, convergence
characteristics, and estimated execution time.

The results show that the proposed GA delivers a
balanced trade-off between solution quality and execution
speed. While ACO marginally outperforms in deviation
percentage, it converges more slowly and incurs higher
runtime. Simulated Annealing, on the other hand, offers
faster convergence but slightly less accurate results.

The JavaScript-based GA stands out in terms of
portability and deployment simplicity, enabling real-time
optimization directly in the browser without additional
dependencies or infrastructure. This is particularly
valuable in mobile and decentralized environments such
as healthcare logistics, where server-based execution is
often impractical.

ISSN: 2715-6923 e-ISSN: 2721-9186

Journal of Intelligent Computing and Health Informatics (JICHI). Vol. 6, No. 1, March 2025: 11-17

16

Table 3. Indicative comparison of heuristic algorithms for small-scale TSP.

ALGORITHM AVG. DEVIATION
(%)

CONVERGENCE
GENERATION

AVG. EXECUTION
TIME (s)

STUDIES

Simulated
Annealing (SA) ~5.5 ~150 ~1.00 (Akram & Habib, 2023)

Ant Colony
Optimization (ACO) ~3.8 ~170 ~1.40 (Patni & Sharma, 2024)

Genetic Algorithm
(GA) 4.28 ± 0.52 ~138 1.26 ± 0.11 Our

It is important to emphasize that this comparison is not

a direct benchmark under controlled conditions but rather
a qualitative positioning of performance metrics within a
recognized range.

To establish definitive performance boundaries, future
work should involve standardized multi-algorithm
benchmarking using identical datasets and runtime
environments. This will enable robust, quantitative
comparison and help guide method selection for specific
application domains.

5. Conclusion and Future Work
This study proposes a lightweight, browser-executable

genetic algorithm (GA) implemented entirely in native
JavaScript to solve the shortest route problem, modeled as
a variant of the Traveling Salesman Problem (TSP).
Unlike conventional optimization frameworks that rely on
backend processing or specialized libraries, the proposed
system operates entirely within the browser, enabling real-
time route planning for web-based healthcare and logistics
applications.

To the best of our knowledge, this is one of the first
studies to design and validate a purely client-side GA
implementation for route optimization, addressing a
critical gap in the existing literature, where most efforts
focus on server-side, compiled, or framework-heavy
solutions. This paradigm shift toward browser-native
evolutionary computing demonstrates how real-time
optimization can be embedded in lightweight,
decentralized, and highly portable environments.

Through extensive scenario testing, the algorithm
consistently produced near-optimal solutions with a mean
deviation of only 4.28% from the known optimum.
Convergence was reliably achieved by generation 138,
with average execution times of 1.26 seconds across
standard browser environments. These outcomes affirm
the system's robustness, efficiency, and suitability for
real-time use in constrained, decentralized settings.

The key contributions of this research are as follows:
• A fully client-side GA framework for route

optimization, eliminating server dependency and
enabling offline usage;

• A robust evolutionary strategy integrating tournament
selection, two-point crossover, and mutation, adapted
for browser execution;

• Empirical evidence of stable, accurate performance
under stochastic initialization across multiple trials;

• A demonstration of JavaScript’s potential to handle
computationally intensive operations traditionally
reserved for compiled languages.

These findings not only contribute to the field of
evolutionary computing and web-based optimization but
also provide a practical foundation for intelligent routing
in decentralized systems such as mobile health units, last-
mile vaccine distribution, or emergency medical logistics.
The browser-native design reduces infrastructure
requirements, making it particularly relevant for rural or
resource-limited regions where server access is unreliable
or unavailable. This strengthens its societal relevance by
increasing accessibility and equity in healthcare delivery.

For future work, several directions are identified for
future enhancement and expansion:
• Real-Time Dynamic Data Integration: Incorporate live

input sources such as traffic data, GPS positioning, and
service-level constraints to enable adaptive routing.

• User Interface Development: Create an intuitive GUI
with interactive maps using HTML5 Canvas or WebGL
to support user interaction and system integration.

• Scalability and Benchmarking: Evaluate performance
on larger datasets (e.g., >50 nodes) and conduct
comparative studies using standard benchmarks (e.g.,
TSPLIB).

• Hybrid AI Models: Integrate GA with machine learning
methods, such as reinforcement learning or self-
adaptive mutation strategies, to enhance convergence
and generalization.

• Privacy-Aware Design: Ensure compliance with data
protection standards (e.g., HIPAA, GDPR) in scenarios
involving sensitive medical routing data.
In conclusion, this research demonstrates that

JavaScript, traditionally perceived as a UI-centric
language, can be effectively repurposed for real-time
evolutionary optimization. It offers a replicable and
practical model for future smart systems and makes a
valuable contribution to IPTEKS by expanding the
boundaries of browser-based computational capabilities.
This opens new pathways for accessible, intelligent, and
socially impactful solutions in healthcare and logistics
domains.

Author Contributions
Farid Fitriyadi conceptualized the research idea and led
the overall study design, with a focus on the theoretical
framework and algorithmic architecture. Muhammad
Daffa Arzeta N was responsible for the development and
implementation of the JavaScript-based genetic algorithm,
as well as the execution of experiments and data analysis.
Farkhod Meliev contributed to the methodological
refinement, cross-validation of results, and literature
contextualization. All authors jointly participated in
drafting the manuscript, revising it critically for

Journal of Intelligent Computing and Health Informatics (JICHI). ISSN: 2715-6923 e-ISSN: 2721-9186

(Farid Fitryadi)

17

intellectual content, and approving the final version for
submission.

Acknowledgements
The authors gratefully acknowledge the Department of
Informatics, Faculty of Science, Technology & Health,
Universitas Sahid Surakarta, for providing academic
support and technical infrastructure that facilitated the
development and experimentation of this study.
Appreciation is also extended to the Research Institute for
the Development of Digital Technologies and Artificial
Intelligence, Tashkent, Uzbekistan, for valuable academic
input during the refinement of the methodology and result
validation. Special thanks are directed to colleagues and
internal reviewers whose constructive feedback helped
improve the quality, clarity, and scientific rigor of the
manuscript. Their insights were instrumental in
strengthening the study’s contribution to both theory and
practice.

Conflict of interest
The authors declare that there are no known financial,
commercial, or personal conflicts of interest that could
have influenced the outcomes or interpretations presented
in this study. All research activities were conducted
independently and in accordance with academic integrity
and ethical standards.

Code Availability
The source code used in this study is publicly available in
the following GitHub repository:
https://github.com/faridtriyadi/js-ga-route. The repository
includes the complete JavaScript implementation of the
genetic algorithm, sample datasets, and usage instructions
for execution within a browser environment. Users are
encouraged to explore, replicate, or extend the
experiments for academic and research purposes under the
repository's open-source license.

References
Akram, M., & Habib, A. (2023). Hybridizing simulated

annealing and genetic algorithms with Pythagorean fuzzy
uncertainty for traveling salesman problem optimization.
Journal of Applied Mathematics and Computing, 69(6),
4451–4497. https://doi.org/10.1007/s12190-023-01935-y

Dymora, P., & Paszkiewicz, A. (2020). Performance Analysis of
Selected Programming Languages in the Context of
Supporting Decision-Making Processes for Industry 4.0.
Applied Sciences, 10(23), 8521.
https://doi.org/10.3390/app10238521

Ferreira, F., Borges, H. S., & Valente, M. T. (2022). On the
(un‐)adoption of JavaScript front‐end frameworks.
Software: Practice and Experience, 52(4), 947–966.
https://doi.org/10.1002/spe.3044

Odeniran, Q., Wimmer, H., & Du, J. (2024). Javascript
frameworks—a comparative study between react. js and
angular. js. In Interdisciplinary Research in Technology
and Management (pp. 319–327). CRC Press.

Patel, S., & Tere, Dr. G. (2025). Analyzing Programming
Language Trends Across Industries: Adoption Patterns
and Future Directions. International Journal of Emerging
Science and Engineering, 13(2), 19–26.

https://doi.org/10.35940/ijese.F3652.13020125
Patni, S., & Sharma, B. (2024). Genetic Algorithms for Decision

Optimization (pp. 29–39). https://doi.org/10.4018/979-8-
3693-2073-0.ch003

Prabhath, C. N., Kavitha, M., & Kalita, K. (2023). Efficiency
analysis of path-finding algorithms in a 2D grid
environment. Journal of Autonomous Intelligence, 7(2).
https://doi.org/10.32629/jai.v7i2.1284

Sulemana, A., Donkor, E. A., Forkuo, E. K., & Oduro-Kwarteng,
S. (2019). Effect of optimal routing on travel distance,
travel time and fuel consumption of waste collection trucks.
Management of Environmental Quality: An International
Journal, 30(4), 803–832. https://doi.org/10.1108/MEQ-
07-2018-0134

