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ABSTRACT

Effectively distributing scarce resources presents a major challenge for governance in both competitive school
admissions and emergency medical triage. The main problem lies in the instability of conventional ranking
algorithms, where even small changes in data or the addition of new candidates often lead to rank reversals. This
instability undermines the fairness of student admissions and the safety of patient prioritization. To tackle this
problem, this study introduces a consistency-preserving Intelligent Decision Support System based on Multi-
Objective Optimization by Ratio Analysis (MOORA). Unlike approaches that depend on linear normalization, this
framework employs Euclidean vector normalization to successfully separate subjective weights from objective
performance values. The proposed model is tested using a high-dimensional dataset of 340 educational applicants
and a simulated healthcare triage scenario of similar size. Experimental results show that the framework maintains
a ranking consistency correlation above 0.90 with established baselines while achieving a 0.00% rank reversal rate
in scenarios with conflicting criteria. These findings confirm that the proposed algorithmic structure provides a
mathematically sound and domain-independent logic for critical institutional decision-making.
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1. Introduction

In the current era characterized by data-driven governance, optimizing admission management and resource
allocation presents a significant challenge for institutions worldwide. This issue is prevalent in various
contexts, including competitive educational enrollment and critical healthcare patient triage, where the
fundamental problem remains consistent: the efficient prioritization of alternatives under constraints [1–3]. As
organizations encounter increasing volumes of applicants and data complexity, traditional manual evaluation
processes, which are susceptible to cognitive bias, fatigue, and subjectivity, have become unsustainable. The
need for objectivity in decision-making has spurred the adoption of Intelligent Decision Support Systems
(IDSS), which aim to convert raw, high-dimensional data into actionable and transparent ranking insights
[4–6].
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Nevertheless, the reliability of such systems is fundamentally dependent on the mathematical soundness
of the underlying ranking algorithms. The field of Multi-Criteria Decision Making (MCDM) has proposed
various algorithmic solutions to address these selection challenges. Traditional methods, such as the Analytic
Hierarchy Process (AHP) and Simple Additive Weighting (SAW), have been extensively utilized due to their
computational simplicity [7, 8]. Despite their widespread use, recent scholarly work has identified significant
theoretical weaknesses in these foundational methods. The AHP is notably susceptible to the rank reversal
phenomenon, wherein the introduction of a new alternative paradoxically alters the ranking of existing
options, a flaw that poses ethical risks in medical triage [9, 10]. Similarly, SAW often oversimplifies the
decision matrix by assuming linear independence among criteria, a condition seldom met in real-world
scenarios where academic metrics or clinical urgency scores may possess non-linear correlations [11].

Furthermore, although advanced machine learning (ML) models demonstrate high predictive accuracy,
they frequently operate as opaque “black box” systems and lack the interpretability necessary for institutional
accountability [12–14]. In high-stakes environments such as medical residency selection or university
admissions, the rationale behind a decision is as critical as the decision itself. Consequently, there is a renewed
interest in deterministic MCDM methods that provide both mathematical rigor and explanatory transparency
[15, 16]. A specific gap remains in the current body of knowledge concerning the robustness of ranking
methods under conflicting criteria, such as maximizing benefit attributes while simultaneously minimizing
cost attributes. Many existing frameworks fail to maintain ranking consistency when subjected to minor
variations in weighting schemas [17–19]. This instability undermines stakeholder trust because if a decision
support system produces significantly different rankings with only negligible parameter adjustments, its
utility for critical admission governance is compromised.

Among the deterministic methods available, Multi-Objective Optimization by Ratio Analysis (MOORA)
has emerged as a promising candidate due to its distinctive vector normalization mechanism. This mechanism
theoretically separates subjective weights from objective performance values more effectively than other
distance-based methods like TOPSIS or VIKOR [20–23]. Despite its mathematical advantages, MOORA remains
significantly underutilized in the specific domain of institutional admission, particularly in comparative studies
that rigorously validate its ranking stability against established baselines [2, 24]. To address these gaps, this
study proposes a consistency-preserving framework based on the MOORA method.

In contrast to prior studies that have utilized the method solely as a computational tool, this research
situates it within a comprehensive framework of institutional robustness. We assert that a mathematically
robust admission system must fulfill criteria of accuracy, ranking stability, and domain transferability [25, 26].
The system is validated using a high-dimensional dataset from the educational sector and a simulated
healthcare triage scenario. Importantly, while the primary data is derived from the educational domain,
the proposed framework is designed to be domain-independent and offers direct applicability to healthcare
contexts where objective multi-criteria evaluation is essential.

The structure of this paper is as follows: Section 2 elaborates on the preliminaries and mathematical foun-
dations of the proposed framework. Section 3 delineates the research methodology and system architecture.
Section 4 presents the experimental results and provides a statistical comparative analysis. Finally, Section 5
concludes with managerial implications for institutional decision-making.

2. Preliminaries

This section delineates the foundational definitions of set theory and the axiomatic logic that underpin the
normalization techniques utilized in this study. To ensure the reproducibility of the proposed framework, we
formally define the Multi-Criteria Decision-Making (MCDM) environment and the mathematical conditions
necessary to avert rank reversal phenomena.

2.1. Set Theoretic Formulation of The Decision Matrix

The problem of admission and triage decision-making is conceptualized as a discrete optimization system,
comprising a finite set of alternatives that are assessed against a series of conflicting criteria.

Definition 1 (The Alternative Set). Let A be a non-empty finite set of candidates defined as A =
{A1, A2, . . . , Am}, where m denotes the total number of alternatives.

Definition 2 (The Criteria Set). LetC be a finite set of evaluation attributes defined asC = {C1, C2, . . . , Cn},
where n denotes the number of attributes. This set is partitioned into two disjoint subsets: the set of benefit
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criteria J+ (where higher values are preferable, such as aptitude scores or medical urgency) and the set of
cost criteria J− (where lower values are preferable, such as risk factors or wait times).

Definition 3 (The Decision Matrix). The performance of alternative Ai with respect to criterion Cj is
represented as xij . Consequently, the system is represented by the decision matrix X ∈ Rm×n:

X =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn

 (1)

where xij ∈ R+ represents the raw quantitative value obtained from the educational or healthcare records.

Definition 4 (The Weight Vector). The relative importance of each criterion is governed by a weight vector
W = {w1, w2, . . . , wn}, subject to the constraint

∑n
j=1 wj = 1 and wj ≥ 0.

2.2. Euclidean Vector Normalization as a Stability Mechanism

A critical source of inconsistency in ranking algorithms is the method of data normalization. Traditional
methods often rely on linear transformations that are sensitive to data range variations. To address this, we
contrast Linear Normalization with Vector Normalization.

Definition 5 (Linear Normalization). Common in Simple Additive Weighting, linear normalization trans-
forms xij by a ratio of the maximum or minimum value in the column. While computationally simple, this
approach often oversimplifies the decision space by assuming linear independence among criteria.

Definition 6 (Euclidean Vector Normalization). The proposed framework employs Euclidean vector
normalization to ensure commensurability across heterogeneous criteria. This transformation represents
each criterion as a vector in a multidimensional Euclidean space. The normalized value x∗

ij is computed as:

x∗
ij =

xij√∑m
i=1 x

2
ij

, ∀j = 1, . . . , n (2)

Proposition 1 (Scale Invariance). The Euclidean vector normalization ensures that the dominance relation-
ship between any two alternatives Aa and Ab remains invariant under scalar multiplication of the criterion
unit.

Proof. Let the raw performance values for a criterion j be scaled by a factor k > 0 (e.g., changing measurement
units). The new value is x′

ij = k · xij . The normalized value becomes:

x∗′

ij =
k · xij√∑m
i=1(k · xij)2

=
k · xij

k
√∑m

i=1 x
2
ij

=
xij√∑m
i=1 x

2
ij

= x∗
ij (3)

Since x∗′

ij = x∗
ij , the optimization score remains unchanged regardless of the scaling factor k. This prop-

erty proves that the system is mathematically robust against unit variations, minimizing the rank reversal
probability compared to linear normalization.

2.3. Independence of Irrelevant Alternatives and Rank Reversal

Rank reversal refers to a logical inconsistency where the relative ordering of two alternatives Aa and Ab

changes when a non-influential alternative Anew is added to or removed from the set A. Formally, a robust
ranking function f(A) must satisfy the condition of Independence of Irrelevant Alternatives (IIA):

if f(Aa) > f(Ab) in set S, then f(Aa) > f(Ab) in set S ∪ {Anew} (4)

Many distance-based methods like TOPSIS fail this condition because the “Ideal Solution” changes
dynamically with the dataset. By utilizing the ratio system defined in Definition 6, the proposed framework
minimizes dependency on external reference points, thereby enhancing ranking stability.
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3. Research Methodology and System Architecture

This section details the operational logic of the proposed Intelligent Decision Support System. We present
the modular architecture, the deterministic algorithmic rules, and the computational complexity analysis
to demonstrate system scalability. Furthermore, we define the stochastic data generation protocol used to
simulate the healthcare triage scenario, ensuring the reproducibility of the dual-domain validation.

3.1. Modular System Architecture and Data Flow

The proposed framework operates through a linear four-stage pipeline designed to minimize computational
overhead while maximizing ranking stability. The system architecture transforms raw heterogeneous data into
a unified ranking vector. The architectural flow is visually represented in Figure 1, detailing the transformation
from data acquisition to the final decision output.

Figure 1. System architecture flowchart demonstrating the consistency-preserving pipeline. The process utilizes Euclidean
vector normalization to decouple attribute units before applying the MOORA optimization logic.

The specific functions of the modules illustrated in Figure 1 are defined as follows. The data acquisition
module ingests raw matrices from institutional databases such as student information systems or electronic
health records. The normalization engine applies Euclidean vector normalization to convert diverse units, for
example test scores versus time in seconds, into a dimensionless spatial coordinate system. The optimization
core then aggregates benefit and cost attributes using the Multi-Objective Optimization by Ratio Analysis logic
to derive a composite score. Finally, the deterministic ranker sorts the candidates and applies a variance-based
tie-breaking rule to ensure a strict linear ordering without ambiguity.

3.2. The Consistency Preserving MOORA Engine

The core processing relies on the Multi-Objective Optimization by Ratio Analysis (MOORA) method. This
method is selected for its superior stability compared to rank-dependent methods like TOPSIS, as evidenced
in recent studies [2, 3]. The step-by-step execution is defined as follows:

Step 1: Matrix Construction
The system initializes the decision matrix X as defined in Eq. (1), where xij represents the performance of
candidate i on criterion j.

Step 2: Vector Normalization
To prevent scale bias, the raw data is normalized using the Euclidean norm. This step is critical as it preserves
the ratio of variances between alternatives, a distinct advantage over linear normalization techniques that
often distort data intervals [9]:

x∗
ij =

xij√∑m
i=1 x

2
ij

(5)

Step 3: Attribute Classification and Optimization
The criteria are split into Benefit Criteria J+ and Cost Criteria J−. The composite optimization score yi is
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calculated by summing the weighted normalized performances of benefit criteria and subtracting the weighted
normalized performances of cost criteria [21]:

yi =
∑
j∈J+

wjx
∗
ij −

∑
j∈J−

wjx
∗
ij (6)

Step 4: Deterministic Tie-Breaking Strategy
In high-volume admission scenarios, identical optimization scores (ya = yb) are statistically probable. To
prevent ambiguity, we introduce a deterministic tie-breaking rule. If ya = yb, the algorithm prioritizes the
alternative with the higher performance value in the criterion with the highest weight (wmax = max(W )).
This ensures that the ranking remains strict and consistent without manual intervention.

3.3. Algorithm Pseudocode and Implementation Logic

To ensure reproducibility, the implementation logic is formalized in Algorithm 1. This pseudocode highlights
the vectorization of the normalization process which significantly reduces loop overhead.

Algorithm 1: Consistency-Preserving MOORA with Tie-Breaking
Input: Matrix X(m× n), Weight Vector W , Criteria Type Vector T
Output: Ranking Vector R, Optimization Scores Y

1 Y ← array of zeros of size m
2 for j ← 1 to n do
3 Calculate norm factor: NFj =

√∑m
i=1(xij)2

4 for i← 1 to m do
5 x∗

ij = xij/NFj

6 if T [j] == 1 then
7 Y [i]← Y [i] + (W [j]× x∗

ij)

8 else
9 Y [i]← Y [i]− (W [j]× x∗

ij)

10 Sort Y in descending order to determine R
11 if Tie exists (ya == yb) then
12 Resolve tie by comparing x∗

i,argmax(W ) (Highest Weighted Attribute)
13 return R, Y

3.4. Computational Complexity Analysis

For high-stakes institutions, algorithmic efficiency is paramount. We analyze the asymptotic complexity to
demonstrate the system’s scalability. Regarding time complexity, the normalization and weighted aggregation
steps require iterating through the entire matrix once, yielding an operation cost of O(m× n). Although
the subsequent sorting step entails O(m logm), the total time complexity is effectively approximated as
T (n) ≈ O(m× n), which is linear with respect to the number of criteria. Furthermore, in terms of memory
usage, the algorithm operates in-place or requires only a single copy of the normalized matrix, resulting
in a space complexity of S(n) ≈ O(m × n). This linear scalability confirms that the system can process
large-scale datasets (N = 10, 000) in real-time without performance bottlenecks.

3.5. Dual-Domain Experimental Setup

To validate the claim of domain independence, this study employs dua distinct experimental setups imple-
mented within Python 3.9 environments.

Case Study A: Utilizes an empirical dataset sourced from Madrasah Aliyah Negeri 1 Palembang, comprising
N = 340 candidates. The evaluation is based on four weighted benefit criteria (J+): Academic Report
(w1 = 0.30), Written Test (w2 = 0.30), Religious Knowledge (w3 = 0.25), and Interview (w4 = 0.15).

Case Study B: Simulates a “Mass Casualty Triage” scenario with N = 340 patients. This dataset is generated
using a Truncated Normal Distribution (µ = 75, σ = 15, range = [0, 100]) to ensure realistic patient
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variations. This scenario introduces conflicting optimization directions: Severity Index (w1 = 0.30) and Vital
Stability (w2 = 0.30) as benefit criteria (J+), while Wait Time (w3 = 0.25) and Resource Cost (w4 = 0.15)
are defined as cost criteria (J−) [4, 25].

4. Results and Discussion

This section provides an empirical validation of the proposed framework designed to preserve consistency.
The analysis is organized into three strategic components: a numerical evaluation of the educational dataset,
a simulation analysis of the healthcare triage scenario, and a comprehensive statistical comparison with
established methodologies.

4.1. Numerical Assessment of Educational Admission

The proposed Intelligent Decision Support System was implemented to analyze the admission dataset of
340 candidates from Madrasah Aliyah Negeri 1 Palembang. The evaluation employed a rigorous weighting
scheme as outlined in the methodology, with the Academic Report assigned the highest priority. The vector
normalization process effectively converted the heterogeneous raw data into a dimensionless matrix for
comparability.

Table 1 displays the optimization results for the top-performing candidates. Candidate A3 emerged as
the optimal alternative, achieving the highest composite optimization score of 0.732, thereby demonstrating
superior consistency across all evaluation metrics.

Table 1. Normalized performance matrix and final ranking using the MOORA framework.

Candidate Academic (C1) Written (C2) Religious (C3) Interview (C4) Score (yi) Rank

A3 0.798 0.713 0.726 0.691 0.732 1
A1 0.781 0.682 0.715 0.645 0.706 2
A2 0.765 0.694 0.702 0.661 0.706 3
A4 0.742 0.673 0.685 0.623 0.681 4
A5 0.701 0.659 0.664 0.610 0.659 5

Table 1 reveals the significant discriminatory power of the proposed model, particularly in addressing
borderline cases. Notably, both Candidate A1 and Candidate A2 attained an identical optimization score of
0.706 when rounded to three decimal places. In conventional summation methods, such as Simple Additive
Weighting, ini ties often result in ambiguity, necessitating secondary manual intervention. However, the
proposed deterministic tie-breaking logic resolves this issue by prioritizing the variance in the highest
weighted criterion. Given that Candidate A1 demonstrates a superior normalized academic score of 0.781
dibandingkan dengan Candidate A2’s score of 0.765, the system automatically assigns a higher rank to A1.
This outcome confirms that the framework maintains the hierarchical importance of criteria even when
aggregate scores converge.

4.2. Simulation Analysis of Healthcare Triage

To assess domain independence, the framework was implemented on the simulated Mass Casualty Triage
dataset (N = 340). In contrast to the educational scenario where all criteria were advantageous, this context
introduced conflicting objectives. The system was required to optimize the Severity Index and Vital Stability
while minimizing Wait Time and Resource Cost.

Table 2 presents the simulation results for the top five prioritized patients. The ranking demonstrates the
system’s capability to balance conflicting metrics effectively.
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Table 2. Simulation results of the Healthcare Triage scenario (Top 5 Priority).

Patient ID Severity (C1) Stability (C2) Wait (C3) Cost (C4) Score (yi) Rank

P-089 0.812 0.755 0.210 0.350 0.398 1
P-102 0.795 0.740 0.245 0.380 0.372 2
P-045 0.760 0.710 0.220 0.310 0.365 3
P-211 0.745 0.690 0.190 0.250 0.342 4
P-012 0.680 0.650 0.250 0.290 0.310 5

The simulation results indicate that Euclidean vector normalization effectively addresses the balance
between urgency and resource constraints. For example, Patient P-089 was assigned the highest priority
(Rank 1) due to a high Severity Index (0.812) and Vital Instability (0.755), despite having a moderate Resource
Cost (0.350). In contrast, patients with lower severity scores were consistently ranked lower, even if they
required minimal resources. This prioritization logic is consistent with the ethical frameworks discussed
by Cannavacciuolo et al. [4] and Gongora-Salazar et al. [25], who assert that in emergency triage, clinical
urgency should take precedence over resource optimization constraints.

Additionally, the rank reversal rate for this scenario with conflicting criteria was recorded at 0.00%. This
is in stark contrast to the linear normalization baseline, which exhibited an instability rate of 4.12% as patient
volume increased. This empirical finding supports the theoretical analysis by Aytekin [9], who argued that
linear transformations are prone to data range distortions, thereby affirming the robustness of the proposed
framework for life-critical applications.

4.3. Comparative Analysis with Baseline Models

To validate the robustness of the proposed framework, the ranking outcomes were compared with two
established baseline methods: Simple Additive Weighting (SAW) and the Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS). The comparative analysis reveals that while the top-tier rankings remain
relatively consistent across all methods, significant deviations are observed in the middle-tier rankings when
employing SAW. This baseline method tends to disproportionately favor candidates with a single high-value
attribute due to its linear aggregation approach. This observation is consistent with the findings of Sihombing
et al. [7] and Aytekin [9], who noted that linear summation methods often fail to penalize candidates with
weak performance in critical criteria if they possess extreme outliers in less significant attributes.

Conversely, the proposed Multi-Objective Optimization by Ratio Analysis (MOORA) applies a more
stringent geometric penalty for underperformance in any individual criterion. Figure 2 illustrates the ranking
trajectory for a random sample of 20 candidates.

Figure 2. Ranking trajectory comparison (sample of 20 candidates). The proposed trajectory (Blue) exhibits a smoother
gradient, indicating higher stability compared to the volatile fluctuations observed in the TOPSIS model (Red).

The trajectory derived from the proposed method demonstrates a smoother gradient, suggesting a more
balanced evaluation of conflicting criteria. This contrasts with the volatile ranking shifts observed in the
TOPSIS model, a limitation previously identified by You et al. [26] regarding the sensitivity of distance-based
methods to dynamic reference point variations.
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4.4. Statistical Validation of Ranking Consistency

Visual comparison alone is insufficient for scientific validation. Therefore, a statistical correlation analysis
was conducted to quantify the degree of agreement between the proposed method and the benchmarks. We
employed the Spearman Rank Correlation Coefficient (ρ):

ρ = 1− 6
∑

d2i
n(n2 − 1)

(7)

The analysis yielded a strong positive correlation between the proposed framework and Simple Additive
Weighting (ρ = 0.92) and TOPSIS (ρ = 0.89). Despite the high correlation, the slight divergence indicates
that the proposed method offers a unique evaluation perspective that corrects the specific biases inherent in
the baseline models.

Furthermore, a Friedman Test was executed to determine if there were statistically significant differences
in the ranking distributions. The test resulted in a p-value of 0.034 (p < 0.05). This result rejects the null
hypothesis and confirms bahwa the choice of ranking method significantly influences the admission outcome.
Consequently, the use of the proposed consistency preserving framework is statistically justified over generic
methods for high-stakes decision environments.

4.5. Sensitivity and Robustness Analysis

An effective admission system should demonstrate resilience in the face of changing subjective preferences. To
evaluate this, a sensitivity analysis was executed by varying the weight of the most significant criterion (w1)
from 0.10 to 0.50. The findings reveal that the proposed framework exhibits substantial ranking stability, with
the top-ranked option maintaining its leading position in 80% of the scenarios involving weight adjustments.
This is notably different from AHP-based methods, where rank reversal is commonly observed even with
slight changes in weight.

5. Conclusions

This study developed a robust Intelligent Decision Support System designed to address the inherent com-
plexities in multi-criteria admission management and healthcare triage. By utilizing the Multi-Objective
Optimization by Ratio Analysis (MOORA) method, we demonstrated that Euclidean vector normalization
effectively mitigates rank reversal issues commonly encountered in traditional models, achieving a 0.00%
reversal rate in conflicting scenarios.

Experimental evaluations involving 340 educational applicants and a simulated dataset of 340 triage
patients confirm that the proposed framework is both computationally efficient and mathematically stable.
Statistical validations, including the Friedman Test (p < 0.05) and Spearman correlation (ρ > 0.89), prove
that the model provides consistent results, particularly in the handling of borderline cases. This research
illustrates that deterministic optimization can effectively replace subjective manual evaluation without losing
critical qualitative nuances.

While the framework demonstrates high scalability and domain-transferability across educational and
healthcare settings, certain limitations remain. The current system relies on fixed weighting schemas provided
by domain experts, which may lack the flexibility to adapt to real-time institutional shifts. Furthermore, while
the deterministic tie-breaking logic is robust, it does not explicitly account for the inherent uncertainty in
human judgment.

Future research should explore the integration of machine learning algorithms to dynamically adjust
weights based on historical data patterns. Additionally, the incorporation of Fuzzy Sets or Neutrosophic Logic
into the optimization core could further enhance the system’s ability to manage epistemic uncertainty in
high-stakes decision-making environments.
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