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Abstract: This study applies EfficientNetB2, a computationally efficient convolutional 
neural network (CNN), to improve the accuracy of skin cancer detection using the 
heterogeneous HAM10000 dataset. Skin cancer classification poses challenges, including 
overfitting and class imbalance, which we address through data augmentation, class 
weighting, and SMOTE (Synthetic Minority Over-sampling Technique). Our model 
achieved accuracy of 86%, precision of 0.87, recall of 0.85, and an AUC of 0.90. These 
results outperform comparable architectures, such as ResNet50 and GoogleNet, while 
maintaining lower computational complexity. The proposed model demonstrates high 
precision in detecting actinic keratoses and basal cell carcinoma, which require timely 
treatment, but faces difficulties in differentiating melanoma from benign nevi because of 
their similar visual appearance. This study highlights the potential of EfficientNetB2 for 
real-world deployment in resource-limited settings, such as mobile health applications and 
telemedicine platforms. Future research will focus on integrating attention mechanisms and 
exploring cross-dataset validation to enhance model generalizability and performance. 
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1. Introduction 
Skin cancer is one of the most prevalent cancers 

globally, and its incidence is increasing because of 
increased ultraviolet radiation (UVR) exposure, lifestyle 
changes, and genetic predisposition (Parker, 2021). Early 
detection is essential to achieve effective treatment and 
reduce mortality. Traditional methods, such as visual 
inspection and biopsy, are reliable, but they are limited by 
the expertise of clinicians and the time required for 
diagnosis (Li et al., 2022). In recent years, artificial 
intelligence (AI)-based solutions, particularly 
Convolutional Neural Networks (CNNs), have 
demonstrated great potential for automating skin cancer 
detection with high accuracy (Goceri & Karakas, 2020). 

Despite the success of previous models such as ResNet 
and GoogleNet, several challenges remain unresolved, 
including overfitting, class imbalance, and limited 
generalizability across heterogeneous datasets. 

Overfitting occurs when models become overly 
specialized in training data, which reduces their ability to 
perform well on unseen data. Moreover, most skin cancer 
datasets are imbalanced, with benign lesions being 
overrepresented, which leads to biased predictions toward 
the majority classes (Hellín et al., 2024; Ragupathi et al., 
2022). Addressing these issues is critical for creating 
robust models that are suitable for clinical environments. 

EfficientNet, proposed by Ravi et al. (2021), introduces 
a compound scaling approach that optimizes the depth, 
width, and resolution of networks, thereby making them 
both accurate and computationally efficient. However, 
although previous studies employing EfficientNet for 
general medical imaging tasks have shown promising 
results (Anwar, 2023), its application to skin cancer 
detection remains underexplored. This study sought to fill 
this gap by leveraging EfficientNetB2, a lightweight and 
high-performance variant, to classify skin lesions 
effectively even in resource-constrained environments, 
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such as telemedicine platforms and mobile health 
applications. 

The contributions of this study are twofold: 
• We address data imbalance and overfitting using 

SMOTE and data augmentation techniques to enhance 
model generalizability. 

• We compare the proposed EfficientNetB2 architecture 
to other CNN models, such as ResNet50 and GoogleNet, 
and demonstrated its superior performance with a lower 
computational burden. 
To evaluate the robustness of our model, we conducted 

experiments on the HAM10000 dataset, which is one of 
the largest publicly available datasets for skin lesion 
classification. Through cross-validation and advanced 
regularization techniques (e.g., dropout and early 
stopping), we ensured reliable and reproducible 
performance. 

The following sections provide a detailed description of 
the dataset, model architecture, and experimental results. 
We discuss the clinical implications of the proposed 
solutions and identify avenues for future research to 
improve the performance and scalability of AI-based 
diagnostic tools. 

2. Methods 
Fig. 1 shows a detailed flowchart of the entire 

experimental pipeline, from data preprocessing to final 
model evaluation. 

Fig 1. Experimental pipeline 

2.1 Dataset and data preparation 

In this study, the HAM10000 dataset was used, which 
consists of 11,644 dermoscopy images distributed into 
seven classes: melanoma (mel), basal cell carcinoma 
(bcc), actinic keratosis (akiec), benign keratosis (bkl), 
dermatofibroma (df), vascular lesion (vasc), and 
melanocytic nevus (nv), which can be accessed on kaggle 
under the title HAM10000 Preprocessing Datan (Table 1). 
Fig. 2 illustrates the unbalanced distribution of classes in 
the dataset. This imbalance, with some benign lesions 
over-represented, poses a risk of biased predictions 
toward these dominant classes. 

 

 
Fig 2. The classes unbalanced distribution in HAM10000 
dataset 

As you can see in Fig. 2 shows a visualization of the 
unbalanced class data in the dataset, which demonstrates 
the need for a class balancing method. To address this 
issue, class weighting was applied during training to 
ensure that minority classes contributed equally to the loss 
function (Roy et al., 2024). Additionally, SMOTE 
(Synthetic Minority Oversampling Technique) was 
employed to generate synthetic samples for 
underrepresented classes, which improves the model's 
generalization ability .

 
Table 1. Dataset class distribution and augmentation strategy.  

CLASS COUNT AUGMENTATION DESCRIPTION IMAGES 

Melona (mel) 1,113 Rotation, Contrast Adjustment Highly malignant 
 

Nevus (nv) 6,705 Horizontal Flip, Zoom Benign but visually similar 
to mel  

BCC (bcc) 514 Brightness Shift Malignant skin tumor 
 

AKIEC (akiec) 327 Rotation Pre-cancerous lesion 
 

BKL (bkl) 1,099 None Benign keratosis 
 

DF (df) 115 None Benign skin lesion 
 

VASC (vasc) 771 None Vascular skin lesion 
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Fig 3. EfficientNetB2 model architecture 

2.2 Model architecture and design 

This study utilizes EfficientNetB2, a model renowned 
for its compound scaling, which efficiently balances 
network depth, width, and resolution efficiently (Ravi et 
al., 2021). EfficientNetB2 is particularly suitable for low-
resource environments, such as mobile health platforms, 
where computational efficiency is critical. Fig. 3 shows 
the architecture of the proposed EfficientNetB2 model. 

The architecture includes: 
• Pre-trained Convolutional Layers: Initialized with 

ImageNet weights to leverage transfer learning. 
• Dropout Layer (Rate: 0.5): This layer prevents 

overfitting by randomly deactivating neurons during 
training. 

• Dense Layer (512 neurons): This layer extracts high-
level abstract features. 

• Softmax Output Layer: Provides probabilistic outputs 
across the seven categories. 
This architecture provides an optimal trade-off between 

model complexity and computational efficiency, making 
it ideal for clinical deployment scenarios. 

2.3 Training procedure and optimization 

Table 2. Hyperparameters for model training.  
HYPERPARAMETER VALUES DESCRIPTION 

Learning rate 1e-4 Initial learning rate 
for Adam optimizer 

Batch size 32 
Number of samples 

processed per 
iteration 

Epoch 50 Maximum training 
iterations 

Dropout rate 0.5 Probability of neuron 
deactivation 

Weight loss (L2) 0.001 Regularization to 
reduce overfitting 

 
The training process used cross-entropy loss to measure 

the discrepancy between the predicted and actual labels. 
The optimization was performed using the Adam 
optimizer with a learning rate of 1e-4. Training was 
conducted over 50 epochs, and early stopping activated if 

validation loss did not improve for five consecutive 
epochs. The ReduceLROnPlateau callback dynamically 
reduced the learning rate by 20% if model performance 
increased. This carefully tuned configuration ensured that 
the model achieved high performance without overfitting, 
as validated through 5-fold cross-validation. 

2.4 Cross-validation and regularization 

To ensure robust performance, 5-fold cross-validation 
is used, this technique is motivated from research 
conducted by Guergueb and Akhloufi (2022). This 
method partitions the dataset into five equal subsets, 
rotating the validation subset across each fold. The 
model's final performance metrics were averaged across 
all five folds to account for any variability in the dataset. 
Pseudocode 1, illustrates the cross-validation process used 
in this study. 

 
Pseudocode 1.  
 
Input: D (HAM10000 Dataset), F (Number of Folds = 5) 
Output: Averaged Metrics (Accuracy, Precision, 
Recall, F1-score) 
 
1: Split D into F folds {D1, D2, ..., DF} 
2: Initialize metrics: Accuracy = 0, Precision = 0, 
Recall = 0, F1-score = 0 
 
3: for i = 1 to F do 
4:     Validation_Set ← Di   
5:     Training_Set ← D \ Di   
6:      
7:     // Train EfficientNetB2 on Training_Set   
8:     Apply Data Augmentation (flip, rotate, zoom)   
9:     Initialize EfficientNetB2 with ImageNet 
weights   
10:    Train model with Adam optimizer,   
           learning rate = 1e-4, batch size = 32   
11:    Monitor Validation Loss for Early Stopping 
(patience = 5)   
12:     
13:    // Evaluate on Validation_Set   
14:    Compute Accuracy, Precision, Recall, F1-score   
15:    Accumulate metrics across folds   
16: end for 
 
17: // Compute final averaged metrics   
18: Accuracy ← Accuracy / F   
19: Precision ← Precision / F   
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20: Recall ← Recall / F   
21: F1-score ← F1-score / F 
 
22: return Averaged Metrics 

 
This pseudocode illustrates the rotation of validation 

and training subsets during cross-validation to ensure 
reliable generalizability. 

The following regularization techniques were applied: 
• Dropout (0.5): Random neurons are deactivated during 

training to mitigate overfitting. 
• L2 Regularization (λ = 0.001): This penalty procedure 

penalizes large weight magnitudes to prevent 
overcomplexity. 

• Early stopping: This step halts training if validation 
performance does not improve, which reduces 
computational cost. 

2.5 Evaluation metrics and model comparison 

The performance of EfficientNetB2 was evaluated 
using multiple metrics to provide a comprehensive 
understanding of classification quality, such as accuracy 
(ACC), precision (PRE), recall (REC), F1-score (F1), and 
area under curve (AUC). The ACC is used to measure the 
proportion of correct predictions among all samples (Eq. 
(1)). PRE used to evaluate the number of correct 
predictions (Eq. (2)). REC used to measure the ability of 
the proposed model to detect all positive cases (Eq. (3)). 
The final F1-S model used balance precision and recall 
through a harmonic mean (Eq. (4)). AUC is used captures 
the trade-off between sensitivity and specificity across 
thresholds. 

 𝐴𝐶𝐶 = !"#!$
!"#!$#%"#%$

 (1) 

 𝑃𝑅𝐸 = !"
!"#%"

 (2) 

 𝑅𝐸𝐶 = !"
!"#%$

 (3) 

 𝐹1 = "&'	×	&'*
"&'#	&'*

 (4) 

 
Fig 4. Confusion matrix and ROC curve for 
EfficientNetB2 

The confusion matrix shows classification performance 
across all seven categories, with the receiver operating 
characteristic (ROC) curve highlighting the model’s 

ability to differentiate between positive and negative 
cases. 

2.6 Benchmarking against other models 

For a comprehensive evaluation, EfficientNetB2 was 
compared against other widely adopted CNN 
architectures, namely ResNet50 and GoogleNet 
(Inception). ResNet50 is recognized for its depth and its 
ability to address the vanishing gradient problem through 
residual connections, making it a reliable choice for deep 
learning tasks. On the other hand, GoogleNet (Inception) 
is designed to handle multi-scale image analysis 
efficiently by utilizing inception modules that capture 
both local and global features simultaneously. 

The comparison between these architectures focused 
not only on classification accuracy but also on their 
computational efficiency, which is crucial for real-world 
deployment, particularly in resource-constrained 
environments. Key performance indicators included 
inference time, the number of parameters (in millions), 
and memory usage during inference. These metrics 
provide a holistic view of each model’s strengths and 
limitations, ensuring that the proposed EfficientNetB2 
offers a balanced trade-off between accuracy and 
efficiency. 

3. Results 
This section presents the performance outcomes of the 

proposed EfficientNetB2 model on the HAM10000 
dataset, including a detailed analysis of class-wise 
metrics, comparison of the performance of the proposed 
model to other state-of-the-art CNN architectures, 
statistical significance testing, and computational 
efficiency. The results highlight the model's suitability for 
real-world deployment, particularly in mobile health and 
telemedicine applications. 

3.1 Model performance on the HAM10000 dataset 

In Table 3, the EfficientNetB2 model demonstrated 
robust performance across multiple evaluation metrics. 
On the test set, the model achieved an accuracy of 86%, 
with a 95% Confidence Interval (CI) of [83.2%, 88.8%], 
indicating reliable generalizability to unseen data. In 
addition to accuracy, the model reported precision of 0.87, 
recall of 0.85, and an F1-score of 0.86, confirming a 
balanced trade-off between correctly identifying positive 
cases and minimizing false positives and negatives. 

The model's area under the receiver operating 
characteristic curve (AUC) was 0.90, indicating excellent 
discrimination capability across various classification 
thresholds, even in the presence of class imbalance. 

3.2 Performance metrics by class 

A breakdown of the model’s performance by class is 
presented in Table 3, which presents the precision, recall, 
and F1-scores for each lesion type. The model exhibited 
strong precision and recall for actinic keratosis (akiec) and 
basal cell carcinoma (bcc), both of which are clinically 
significant conditions that require timely diagnosis and 
treatment. However, some misclassification was observed 
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between melanoma (mel) and melanocytic nevus (nv), a 
common challenge because of the visual similarity 
between these lesion types.

 
Table 3. Performance cetrics by class with 95% CI.  

CLASS PRE (%) REC (%) F1 (%) AUC 

Melanoma (mel) 84.5 [82.0, 86.7] 79.2 [76.5, 81.9] 81.8 [78.9, 84.4] 0.89 

Basal cell carcinoma (bcc) 89.7 [87.4, 91.8] 87.2 [85.1, 89.3] 88.4 [86.0, 90.6] 0.91 

Actinic keratosis (akiec) 92.1 [90.3, 93.8] 89.3 [87.4, 91.1] 90.7 [88.5, 92.7] 0.93 
Melanocytic nevus (nv) 80.3 [77.2, 83.0] 78.1 [75.5, 80.6] 79.2 [76.4, 81.8] 0.87 

Other classes (df, bkl, vasc) 85.5 [82.5, 88.0] 84.8 [81.9, 87.3] 85.1 [82.0, 87.6] 0.88 
 

Table 4. Comparison of models on HAM10000 dataset.  

MODELS ACC (%) PRE (%) REC (%) F1 (%) PARAMETERS 
(millions) 

INFERENCE 
TIME (ms) 

EfficientNetB2 86 [83.2, 88.8] 0.87 0.85 0.86 9.2 45 

ResNet50 82 [79.1, 85.3] 0.84 0.81 0.82 25.6 110 

GoogleNet (Inception) 83 [80.4, 85.9] 0.85 0.83 0.84 22.0 90 
 
The model’s performance was particularly robust in 

detecting akiec and bcc, which pose significant clinical 
risks if left untreated. However, the slight reduction in 
melanoma detection performance highlights an area for 
potential improvement, and further feature engineering or 
attention mechanisms are needed to improve the 
classification of ambiguous lesions. 

3.3 Comparison with state-of-the-art CNN models 

To comprehensively assess the performance of 
EfficientNetB2, it was benchmarked against two popular 
CNN architectures: ResNet50 and GoogleNet (Inception). 
The results are summarized in Table 4, focusing on both 
classification performance and computational efficiency. 

As you can see in Table 4, show the EfficientNetB2 
outperformed both ResNet50 and GoogleNet in terms of 
accuracy and F1-score while requiring fewer parameters 
and faster inference times. In particular, EfficientNetB2 
achieved an inference time of 45 ms, which was 
approximately 2.4 times faster than ResNet50 and 2x 
faster than GoogleNet. This computational efficiency 
renders the proposed model highly suitable for resource-
limited environments, such as mobile health platforms, 
where both speed and accuracy are essential. 

3.4 Statistical significance testing 

To determine the significance of the observed 
performance differences, paired t-tests were conducted 
between EfficientNetB2 and the other models. The results 
indicated that the improvements in accuracy and inference 
time achieved by EfficientNetB2 were statistically 
significant (p < 0.05) compared to ResNet50 and 
GoogleNet, confirming the robustness of the proposed 
architecture. 

3.5 Confusion matrix and ROC curve analysis 

A detailed analysis of the confusion matrix (Fig. 5) 
provided further insights into the model’s 
misclassification patterns. The matrix revealed high 

classification accuracy for akiec and bcc, but 
misclassification errors occurred predominantly between 
melanoma (mel) and nevus (nv) due to morphological 
overlap. This suggests the need for more advanced feature 
extraction or attention-based layers in future model 
iterations. 

 
Fig 5. Confusion Matrix for EfficientNetB2 Model 

 

 
Fig 6. ROC curve with AUC value  
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The ROC curve (Fig. 6) for all seven classes 
demonstrated an AUC of 0.90, confirming the model’s 
ability to perform well across varying classification 
thresholds. 

3.6 Computational efficiency 

The computational efficiency of the proposed model 
was evaluated to assess its feasibility for real-time 
applications. EfficientNetB2, with 9.2 million parameters, 
required 45 ms for inference, outperforming both 
ResNet50 and GoogleNet in terms of speed and resource 
usage. These results highlight the potential of 
EfficientNetB2 for deployment in telemedicine platforms 
and mobile health applications, where both speed and 
model size are critical constraints. 

4. Discussions 
This study demonstrated the potential of 

EfficientNetB2 as a lightweight, accurate, and 
computationally efficient deep learning model for skin 
cancer detection, addressing critical challenges such as 
overfitting and class imbalance, which often limit the 
practical deployment of AI in healthcare. The results 
demonstrate the viability of EfficientNetB2 in resource-
constrained environments, including mobile health 
platforms and telemedicine applications, where rapid and 
reliable diagnostic support is crucial. 

4.1 Clinical implications 

The successful performance of EfficientNetB2 
highlights its potential to enhance clinical workflows by 
functioning as a decision support tool for dermatologists. 
In practice, this model can be deployed as a prescreening 
or triaging tool to prioritize high-risk patients and reduce 
clinician workload. Early detection of malignant lesions, 
such as melanoma and actinic keratosis, is essential, and 
the model’s high precision for these classes underscores 
its clinical value in detecting critical cases that require 
immediate attention. Furthermore, the proposed model, 
with its small memory footprint and fast inference times, 
is suitable for telemedicine initiatives in underserved 
regions where access to specialized dermatologists may be 
limited. EfficientNetB2’s adaptability also enables it to be 
integrated into mobile applications, providing real-time 
predictions that can assist non-specialists and primary care 
providers in making timely referrals. 

4.2 Comparison with state-of-the-art models 

In this study, EfficientNetB2 was compared directly 
with ResNet50 and GoogleNet (Inception), two well-
established CNN architectures. Although these models 
have demonstrated strong classification performance in 
medical imaging, they exhibit certain limitations, 
particularly computational efficiency and model size. 
EfficientNetB2 achieved higher accuracy (86%) with 
fewer parameters (9.2M) and shorter inference times (45 
ms) than both ResNet50 and GoogleNet. These results 
align with recent AI model optimization trends, which 
emphasize the need to balance performance with 
computational demands, especially in healthcare 

environments where resources are limited (Li et al., 2022; 
Ravi et al., 2021). The findings also demonstrate the 
potential of EfficientNetB2 to address the overfitting and 
generalization challenges identified in previous studies 
involving complex CNN architectures (Goceri & Karakas, 
2020). 

4.3 Limitations and challenges 

Although the results are promising, this study 
acknowledges several limitations that need to be 
addressed in future research. First, the HAM10000 dataset 
is comprehensive but does not fully capture the diversity 
of skin lesions encountered in clinical practice. 
Differences in patient demographics, imaging conditions, 
and lesion morphology across populations can affect 
model performance in real-world settings. Future studies 
should validate the proposed model on multiple 
datasets—such as ISIC and PH2—to ensure broader 
generalizability (Hellín et al., 2024; Ragupathi et al., 
2022). In addition, the class imbalance problem persists 
despite the use of SMOTE and data augmentation. 
Although these methods reduce bias, further 
improvements can be achieved by incorporating GAN-
based data augmentation, generating synthetic images to 
enrich underrepresented classes, such as rare 
malignancies (Ragupathi et al., 2022; Wang et al., 2021). 

Another challenge lies in the misclassification of 
melanoma as melanocytic nevus, which reflects the 
morphological similarities between the two types. This 
issue could have significant clinical implications because 
misdiagnosing melanoma could delay life-saving 
interventions. To address this limitation, future models 
could integrate attention mechanisms or feature extraction 
modules that focus on subtle differences in texture and 
pigmentation. For example, hybrid models combining 
CNNs with Transformer-based architectures may enhance 
the model’s ability to capture fine-grained features, 
thereby improving differentiation between ambiguous 
lesions (He et al., 2023). 

4.4 Future directions 

To further enhance the practical applicability of this 
model, clinical trials are recommended to evaluate its 
impact on real-world diagnostic workflows. Such trials 
could assess the model’s effectiveness in reducing 
diagnostic delays, improving patient outcomes, and 
enhancing clinician satisfaction. Moreover, ensemble 
learning approaches—combining EfficientNetB2 with 
other architectures, such as ResNet and DenseNet could 
offer complementary strengths, leading to more robust 
predictions, particularly for rare and complex cases. 

Another promising direction is the integration of self-
attention mechanisms into the EfficientNetB2 
architecture. Recent studies have demonstrated that 
attention-based layers can help models focus on relevant 
visual regions in medical images, which could mitigate 
misclassification risks (Anwar, 2023). Furthermore, the 
deployment of this model on edge devices—such as 
smartphones—offers exciting possibilities for real-time 
diagnostics, particularly in telemedicine settings. 
However, regulatory and ethical considerations must be 
carefully addressed to ensure patient privacy and data 
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security, especially when deploying AI models in 
healthcare environments. 

4.5 Ethical and practical considerations 

As AI models like EfficientNetB2 become integrated 
into healthcare workflows, it is essential to address ethical 
concerns related to algorithmic bias and transparency. 
Although the model performed well on the HAM10000 
dataset, algorithmic biases may emerge when applied to 
different patient populations. Therefore, continuous 
monitoring and validation across diverse clinical 
environments are required to prevent unintended biases. 
Transparency is also critical; clinicians must trust the 
predictions made by AI models to incorporate them 
effectively into patient care. Providing explainability 
tools, such as SHAP (SHapley Additive exPlanations) 
values or attention maps, could help bridge the gap 
between AI predictions and clinician trust, thus improving 
decision-making processes. 

From a practical perspective, it is important to ensure 
that AI-based diagnostic tools comply with regulatory 
frameworks, such as the General Data Protection 
Regulation (GDPR) and other healthcare-specific 
guidelines. Robust data anonymization techniques should 
be employed to protect patient privacy when training and 
deploying models in telemedicine environments. 

5. Conclusion 
This study demonstrated the potential of 

EfficientNetB2 as a reliable tool for skin cancer detection, 
achieving 86% accuracy with high precision and recall for 
certain high-risk lesions, such as actinic keratoses (akiec) 
and basal cell carcinoma (bcc). The model’s lightweight 
architecture and computational efficiency make it 
particularly suitable for deployment in resource-limited 
environments, such as mobile health platforms and 
telemedicine systems, where rapid and accurate 
preliminary diagnoses are essential. 

Despite these promising results, the study identified 
several challenges, including overfitting after the 8th 
epoch and misclassification of melanoma and nevus, 
which could affect patient outcomes in real-world clinical 
settings. To address these limitations, future work should 
explore advanced regularization techniques, such as 
GAN-based data augmentation, ensemble models, and 
self-attention mechanisms, to improve classification 
performance, particularly for ambiguous lesion types. 

Furthermore, cross-dataset validation using datasets 
like ISIC or PH2 will be critical to ensure the model’s 
generalizability across diverse clinical scenarios. The 
integration of EfficientNetB2 into dermatological 
workflows requires not only technological optimization 
but also ethical frameworks to maintain transparency, 
reduce bias, and safeguard patient privacy. 

In summary, EfficientNetB2 has significant promise for 
improving the efficiency and accuracy of skin cancer 
detection. Further refinement and clinical validation are 
essential for developing reliable dermatological tools. 
With continued research and development, this model can 
enhance early detection, optimize diagnostic workflows, 
and ultimately improve patient outcomes through timely 
intervention.  
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