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Abstract: In modern agriculture, quickly identifying agricultural pests is essential for 

maintaining high crop yields and ensuring global food security. In diverse and dynamic 

agricultural environments, traditional pest detection methods exhibit reduced accuracy, 

limited scalability, and lack interpretability. In this study, EfficientNetV2-L and Grad-CAM 

were used to significantly enhance pest detection system performance and transparency. 

EfficientNetV2-L, a fast and resource-efficient model, excels particularly in 

computationally constrained environments. Traditional CNN models, including 

EfficientNetV2-L, are criticized as uninterpretable "black boxes" despite their high 

accuracy. To address this issue, Grad-CAM was used to generate salient maps that visually 

show the most influential areas of the input image in the model’s decision-making process. 

This combination not only provides superior pest detection accuracy but also provides 

actionable insights into the model’s predictions, which is an important feature for building 

trust among agricultural practitioners. Our experimental results show a 15% improvement 

in detection accuracy compared to conventional models, especially in identifying visually 

similar-looking pest species that are often misclassified. In addition, the enhanced 

interpretability provided by Grad-CAM has led to a deeper understanding of the model’s 

behaviour, enabling iterative adjustments and improvements that further enhance the 

reliability of the system. The practical implications of these findings are significant: this 

integrated model offers a robust solution that can be seamlessly applied to real-time 

agricultural monitoring systems. With the early detection and proper classification of pests, 

this model can be used as a more effective pest management strategy to minimize crop 

damage and increase agricultural productivity. This research not only advances the 

technological frontier of pest detection but also contributes to broader goals related to 

sustainable agriculture and food security. Future research will focus on expanding the 

applicability of this model across different agricultural contexts, improving its adaptability 

to different environmental conditions, and further optimizing its performance through 

advanced techniques such as transfer learning and ensemble methods. 
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1. Introduction 

Agriculture plays a crucial role in the economy and 

ensures a global food supply. However, serious threats to 

agricultural productivity arise from insect pest attacks, 

which can cause significant losses (Bouri et al., 2023). 

Therefore, effective insect pest identification and control 

cannot be overstated. These measures are vital to 

maintaining agricultural yield productivity and quality. 
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In agriculture and ecology, pests are organisms that 

significantly disrupt the growth, health, and reproduction 

of plants, livestock, and natural environments. The 

impacts of climate change on agricultural ecosystems are 

substantial because they can cause significant crop losses, 

threaten agricultural sustainability, and even affect global 

food security (Farooq et al., 2023). This phenomenon 

raises serious concerns among farmers, agricultural 

scientists, and policymakers because pest outbreaks can 

be highly detrimental to food production worldwide. 

Effective identification and management of pests have 

become priorities in various agricultural and 

environmental conservation programs. Understanding the 

behaviors, spread patterns, and potential damage caused 

by pests is vital for developing appropriate and efficient 

protection strategies (Dara et al., 2023). 

In this context, technology and innovation in pest 

detection are becoming increasingly important. In an era 

where technology underpins revolutions across various 

life sectors, including agriculture, its use extends to the 

assessment and management of agricultural issues. 

Convolutional Neural Networks (CNNs) have emerged as 

a primary focus in this technological advancement (Bouri 

et al., 2023). Inspired by the visual cortex structure of the 

human brain, the proposed neural network architecture 

can process and analyze image information more 

complexly than its predecessors. The primary advantage 

of CNNs lies in their ability to identify highly complex 

and abstract visual patterns and features in images. 

The application of CNNs to the classification and 

detection of pests in plants has marked a significant leap 

forward in modern agricultural technology. The ability of 

CNNs to learn higher-level representations of visual 

patterns in plant images has enabled more accurate pest 

detection, faster response times, and more detailed 

monitoring (Tugrul et al., 2022). This technology not only 

offers more reliable pest detection solutions but also paves 

the way for more efficient and sustainable agricultural 

practices. The application of CNNs in agriculture provides 

new hope for addressing the challenges faced by farmers. 

In terms of pest classification, the success of CNNs in 

improving the accuracy and speed of identifying and 

categorizing various types of plant pests has significantly 

impacted crop losses and enhanced agricultural welfare 

(Zhao et al., 2022). 

However, adopting CNNs as pest classification 

solutions entails complexities, particularly in terms of 

interpreting and understanding the decision-making 

processes within the model. Although CNNs offer high 

accuracy in visual pattern recognition, these models tend 

to be seen as "black boxes," where their internal decision-

making induction and basis are not fully transparent. The 

high reliability of these models often sacrifices 

interpretability, which is crucial in agricultural 

applications. A deeper understanding of how and why 

models make decisions is required, especially for pest 

identification contexts. To address this issue, the Grad-

CAM (Gradient-weighted Class Activation Mapping) 

method emerges as an attractive solution. According to 

Selvaraju et al. (2020) Grad-CAM provides strong visual 

access to critical areas in images that CNN models focus 

on. With the proposed method, we can visualize which 

areas are primary determinants when classifying images 

containing pests. Thus, while maintaining reliability and 

accuracy, Grad-CAM can dissect the thought process 

behind the model’s decisions, opening an interpretive 

window into the image classification process. 

Objectives and hypothesis: This study aimed to 

evaluate the effectiveness of the EfficientNetV2-L model 

equipped with the Grad-CAM technique in classifying 

insects for pest detection. We hypothesize that integrating 

the EfficientNetV2-L model with the Grad-CAM 

technique will enhance the model’s performance and 

interpretability for insect pest detection, providing deep 

visual insights that can be applied to real agricultural 

practices. Through this study, we hope to develop a 

reliable and efficient tool for real-time pest detection that 

will support more effective and sustainable agricultural 

practices. 

This paper begins by providing a comprehensive review 

of the existing literature on pest detection technologies 

and their applications in agriculture, providing a solid 

background for understanding advances in this field. The 

methodology section details the integration of the 

EfficientNetV2-L model with the Grad-CAM technique, 

followed by an in-depth analysis of the results obtained 

from various experimental setups. The discussion 

interprets these findings in the context of current 

agricultural practices, and the paper concludes by 

highlighting potential implications for future research and 

practical applications in sustainable pest management. 

2. Research Method 

2.1 Dataset description and ethical considerations 

The dataset used in this study comprises over 5,000 

images collected from a publicly accessible source on 

Kaggle (https://www.kaggle.com/datasets/vencerlanz09/ 

agricultural-pests-image-dataset). These images were 

categorized into 12 classes of agricultural pests, including 

ants, bees, beetles, caterpillars, earthworms, earwigs, 

grasshoppers, moths, slugs, snails, wasps, and weevils. 

Sample dataset is shown in Fig. 1. Each category contains 

a varied number of images, ensuring diverse 

representations of pests commonly encountered in 

agricultural produce. 
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Fig 1. Sample dataset 

Data augmentation techniques were employed to 

enhance the dataset and improve its generalizability. 

Techniques such as resizing, horizontal flipping, rotation, 

and contrast adjustments were applied using TensorFlow's 

ImageDataGenerator. These augmentations increase the 

dataset diversity, providing the model with a richer set of 

images to learn from, thereby improving its robustness. 

Ethical considerations and permissions for using the 

dataset by adhering to Kaggle’s usage guidelines, 

ensuring that the data are used responsibly and ethically. 

The dataset is publicly available and will be used in 

research; no additional permissions were required. 

2.2 Model architecture 

The development of the image classification model 

involved several structured and detailed steps (see in Fig. 

2). The process began with data preprocessing, where the 

dataset was divided into training, validation, and test sets 

using the train_test_split method from the sklearn library. 

Tools like ImageDataGenerator and 

flow_from_dataframe from TensorFlow were used to 

convert the dataset from DataFrame format to a usable 

form for the model. The data augmentation process, as 

described previously, was applied to enrich the training 

dataset. 

The training phase involved loading a pre-trained 

convolutional neural network (CNN) model, 

EfficientNetV2-L, with weights from the ImageNet 

dataset serving as the basis for the image classification 

model. The model architecture was fine-tuned by adding 

Dense, Dropout, and output layers with softmax activation 

functions according to the desired number of classes. The 

model was compiled using the Adam optimizer, 

categorical_crossentropy loss function, and accuracy 

metric, and then trained on training and validation data for 

100 epochs with callbacks, such as ModelCheckpoint, 

EarlyStopping, and TensorBoard.

 

Fig 2. Model proposed 

 

Fig 3. CNN architecture 

2.3 Model evaluation  

The evaluation phase involved assessing the model 

using test data to obtain metrics, such as loss, accuracy, 

precision, recall, and F1 score, using the classification 

report from sklearn. Predictions on the test data by 

converting the predicted labels back to class names for 

comparison with the actual labels. 
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The final steps included plotting the Classification 

Reports and Confusion Matrix, which provided a detailed 

breakdown of the model’s performance across different 

classes and helped identify areas where the model made 

errors. Grad-CAM visualization was used as a technique 

to understand which areas of the images the model 

focused on when making predictions, providing insights 

into the model’s decision-making process. 

2.4 Convolutional neural network 

In the image processing domain, several algorithms are 

commonly used, such as naive bayes (Wu et al., 2017), 

support vector machine (Gholami & Fakhari, 2017), and 

neural networks (Turkoglu, 2021). Convolutional neural 

networks (CNN) represent a significant evolution of 

Neural Networks, specifically designed for digital image 

recognition. The primary advantage of CNNs lies in their 

ability to mimic the image recognition system of the 

human visual cortex. Numerous studies have 

demonstrated that CNNs are superior models for tasks 

such as object detection and recognition. 

Technically, CNNs comprise several trainable stages, 

including feature extraction via image convolutions and 

classification via neural networks. The CNN architecture, 

inspired by LeNet5, includes key layers such as 

convolutional, relu, subsampling/pooling, and fully 

connected layers. 

2.5 Grad-CAM 

Gradient-weighted class activation mapping (Grad-

CAM) is a visualization technique that focuses on creating 

saliency maps to highlight important areas in an image 

that influence the predictions of the classification model 

(Selvaraju et al., 2020). The basic concept involves using 

a saliency map 𝐿𝑐 in the context of binary object 

classification tasks, where the output is 0 indicating the 

absence of an object, and 1, indicating its presence. Here, 

the representation 𝐴𝑘 depicts the visualization of the k-th 

feature map. Previous research indicates that each 𝐴𝑘 is 

triggered by abstract visual patterns, with 𝐴𝑖𝑗 = 1 if the 

visual pattern is detected, and 𝐴𝑖𝑗 = 0 if not. 

Furthermore, the derivative 
𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
 is expected to have a 

high value for feature map pixels that contribute to the 

presence of the object. The feature map weights are 

obtained through a derivative formulation implemented in 

the Grad-CAM method for a given input image. This 

process produces a Grad-CAM saliency map that 

highlights the spatial footprint of the object in the image, 

which significantly affects visualization. However, if 

multiple object occurrences or orientation variations 

occur, the activated feature maps may produce different 

spatial footprints, affecting the final saliency map's 

intensity. 

To address variations in spatial footprints, Grad-CAM 

employs a weighted average approach to pixel gradients. 

In this approach, the weighting coefficients 𝛼𝑘𝑐𝑖𝑗 for class 

𝑐 and the convolutional feature map 𝐴𝑘 are calculated by 

considering pixel gradients, ensuring that the presence of 

objects in all feature maps is equally highlighted. This 

method captures the importance of specific activation 

feature maps 𝐴𝑘, by selecting positive gradients to indicate 

visual features that enhance the output neuron activation, 

resulting in a better understanding of the image and its 

contribution to the classification model's predictions. 

Thus, Grad-CAM is a powerful alternative for 

understanding the significance of features in images 

related to the classification model's output.

 

 
Fig 4. Grad-CAM model architecture 

 

 
Fig 5. The EfficientNetV2 model architecture (source: Albattah et al., 2022) 
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2.6 EfficientNetV2-L 

EfficientNetV2 represents an evolution of the CNN 

model, demonstrating higher training speed and better 

parameter efficiency compared to its predecessor, 

EfficientNet (Tan & Le, 2021). This model employs a 

training-aware neural architecture search and scaling 

approach. The core architecture of EfficientNetV2 is 

illustrated in Fig. 5. 

From the illustrated EfficientNetV2 architecture, 

several new blocks are introduced, which significantly 

enhance the efficiency and performance compared to 

EfficientNet. Among these innovative blocks are 

MBConv (Mobile Inverted Residual Bottleneck 

Convolution), Fused-MBConv (Fused Mobile Inverted 

Residual Bottleneck Convolution), and SE (Squeeze-and-

Excitation). These blocks are designed to improve 

operational efficiency and provide more optimal feature 

representations in the model. 

EfficientNet presents a series of models optimized 

specifically for floating-point operation efficiency 

(FLOPs) and parameters. This method adopts Neural 

Architecture Search (NAS) to find the base model, 

EfficientNet-B0, calibrated to have an optimal balance 

between accuracy and floating-point operations (FLOPs). 

The base model is subsequently scaled up using a 

composite scaling strategy, resulting in the B1-B7 model 

family. Although some recent studies have claimed 

significant improvements in training or inference speed, 

they often perform worse than EfficientNet in terms of 

parameter efficiency and floating-point operations 

(FLOPs). This research focuses on increasing the training 

speed while maintaining optimal parameter efficiency. 

Therefore, the development of the EfficientNetV2 model 

involves a new approach to Neural Architecture Search 

(NAS) that addresses the training and scaling model 

aspects, specifically, overcoming some of the 

shortcomings of previous models. 

By providing a detailed dataset description and 

addressing ethical considerations, along with a structured 

and thorough explanation of the model architecture and 

evaluation procedures, this methods section offers a 

comprehensive overview necessary for replicating and 

understanding the study methodology. 

3. Results and Discussion 

3.1 Data understanding using ELA 

The error level analysis (ELA) results revealed 

significant observations regarding the impact of 

compression levels on image fidelity (see in Fig. 6). The 

primary image on the left displays a clear image of an ant 

against a white background, which serves as the reference 

for analysis. Adjacent to this, nine smaller images 

exhibited ELA outputs at varying quality levels (q: 100, 

92, 84, 76, 68, 60, 52, 44, and 36). At higher quality levels 

(q:100 to q:84), the error levels are relatively low, as 

indicated by the less prominent colourful pixel patterns, 

suggesting minimal compression artefacts and high image 

fidelity. As the quality decreases to medium levels (q:76 

to q:60), the error levels increase, evidenced by more 

noticeable colourful pixel patterns, indicating moderate 

compression artefacts that start affecting image details. At 

the lowest quality levels (q:52 to q:36), the error levels are 

significantly high, with very prominent colourful pixel 

patterns, implying substantial compression artefacts that 

considerably degrade the image quality. The grid lines in 

each ELA output facilitate the analysis of specific areas 

exhibiting changes, with error patterns becoming more 

pronounced as quality decreases. These ELA results 

effectively highlight how varying compression levels 

impact the image, with increasing error levels 

corresponding to lower quality settings, thereby aiding in 

the detection of potential modifications or manipulations 

in the image.

 

 

Fig 6. Results of ELA 
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3.2 Preprocessing  

The data pre-processing results are summarized in 

Table 2, which categorizes the images into different 

classes for training, validation, and testing purposes. A 

total of 5,494 images were divided, as shown in Table 1. 

During the pre-processing phase, the dataset was 

organized into three distinct subsets: training, validation, 

and testing. The training set comprised 3,516 images and 

was used to train the model to identify patterns and 

features associated with different pest categories. The 

validation set, which contained 879 images, was used to 

fine-tune the model, monitor its performance, and prevent 

overfitting by adjusting the hyperparameters. The testing 

set, consisting of 1,099 images, was reserved for the final 

evaluation of the model’s performance to provide an 

unbiased assessment of its accuracy and generalizability. 

Data augmentation techniques were applied to enhance 

model robustness. These techniques included resizing, 

horizontal flipping, rotation, and contrast adjustment. 

These augmentations increased the diversity of the 

training set, which improved the generalizability of the 

model to new, unseen images. The significant number of 

images in each subset ensured that the model was exposed 

to a wide variety of examples, thus improving its ability 

to accurately classify different types of pests. 

The pre-processing phase successfully structured the 

dataset, ensuring a balanced distribution of images across 

all classes and subsets. This foundation step is crucial for 

training a reliable and efficient model capable of 

performing accurate pest detection in agricultural settings. 

3.3 Model evaluation  

The evaluation of the model's performance was 

conducted using a comprehensive set of metrics, including 

accuracy, precision, recall, and the F1 score. The results 

presented in Table 3 demonstrate the model's 

effectiveness in classifying various categories of 

agricultural pests. The metrics for each class reveal the 

model's strengths and areas for improvement. 

The precision metric reflects the model’s accuracy in 

identifying positive samples, with high precision scores 

across most classes indicating a low false positive rate. 

Recall measures the model's ability to correctly identify 

all relevant instances; high recall scores suggesting a low 

false negative rate. The F1 score, which combines 

precision and recall into a single metric, provides a 

balanced measure of model performance. The support 

column lists the number of true instances for each class in 

the test dataset.

 

 

Table 1. The caption must be shown before the table.  

DATA SPLIT NUMBER OF IMAGES NUMBER OF CLASSES 

Training 3516 12 

Validation 879 12 

Testing 1.099 12 

 

 

 

Table 2. Classification report.  

CLASS PRECISION RECALL F1-SCORE SUPPORT 

Ants 0.91 0.99 0.95 94 

Bees 0.9 0.93 0.91 92 

Beetle 0.85 0.71 0.77 94 

Caterpillar 0.69 0.76 0.73 85 

Earthworms 0.9 0.79 0.84 67 

Earwig 0.89 0.62 0.73 89 

Grasshopper 0.9 0.91 0.91 105 

Moth 0.85 0.94 0.89 99 

Slug 0.91 0.91 0.91 76 

Snail 0.99 1 1 102 

Wasp 0.86 0.92 0.89 104 

Weevil 0.91 0.99 0.95 92 
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Fig 7. Example predictions on test data with ground truth and model outputs 

The confusion matrix shown in Fig. 8, offers further 

insights into the model's classification capabilities. This 

model highlights both correct classifications and common 

misclassifications, which are crucial for understanding the 

model's behaviour and areas where it may struggle. 

 

Fig 8. Confusion matrix result 

The confusion matrix reveals that the model performs 

well in correctly identifying most pest categories. 

However, it also shows instances of misclassification 

between similar-looking pests, such as caterpillars and 

beetles. This indicates areas where the model might 

benefit from further refinement or additional training data 

to improve its discriminatory power. 

a. Macro and weighted averages 

The macro average precision, recall, and F1-score 

(0.88, 0.87, and 0.87 respectively) provide an unweighted 

mean of the metrics across all classes, highlighting the 

overall performance without considering class imbalance. 

The weighted average scores (all at 0.88) accounted for 

the support of each class, providing a more nuanced view 

of the model’s performance considering the distribution of 

the dataset (see in Table 3). 

Table 3.  Macro and weighted averages results.  

MATRIX MACRO AVG WEIGHTED AVG 

Precision 0.88 0.88 

Recall 0.87 0.88 

F1-score 0.87 0.88 

b. Overall accuracy 

The overall accuracy of the model (Table 4, stands at 

0.88 (88%), indicating a high level of correctness in the 

model's predictions across the entire test dataset. 

Table 4. Overall accuracy.  

ACCURACY NUMBER OF SAMPLES 

0.88 1099 

As you can see in Table 4, reveal evaluation metrics 

collectively demonstrate that the EfficientNetV2-L 

model, combined with Grad-CAM techniques, provides a 

robust and reliable tool for classifying agricultural pests. 

The high precision, recall, and F1-scores across multiple 

classes, along with detailed insights from the confusion 

matrix, affirm the model's effectiveness and potential 

applicability in real-world agricultural scenarios. 

c. Training and validation performance 

Fig’s. 9 and 10 present the training and validation 

accuracy and loss over 100 epochs. Initially, both training 

accuracy and loss show significant improvements, 
indicating effective learning from the training data. 
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However, beyond epoch 40, the validation accuracy 

begins to plateau while the training accuracy continues to 

improve, suggesting potential overfitting. 

 

Fig 9. Training and validation accuracy 

 

Fig 10. Training and validation loss 

To mitigate overfitting, techniques such as early 

stopping, dropout layers, and regularization were applied. 

Early stopping halts training when validation performance 

ceases to improve, preventing the model from over-

adapting to the training data. Dropout layers randomly 

deactivate neurons during training, which helps prevent 

the model from becoming too dependent on any single 

neuron. Regularization adds a penalty to the loss function 

based on the magnitude of the model coefficients, 

discouraging complexity and encouraging simplicity. 

3.4 Discussion 

a. Model performance and implications 

The results of this study demonstrate that the 

EfficientNetV2-L model, augmented with Grad-CAM 

visualization techniques, provides a robust solution for the 

classification of agricultural pests. With an overall 

accuracy of 88%, the model exhibits strong performance 

across various metrics, including precision, recall, and F1-

score. These high-performance metrics suggest that the 

model is capable of effectively distinguishing between 

different pest categories, making it a valuable tool for real-

world agricultural applications. 

The precision values indicate the model's efficacy in 

minimizing false positives, ensuring that pest detection is 

accurate and reliable. High recall values across most 

classes demonstrate the model's proficiency in identifying 

true positive instances, which is crucial for timely pest 

management and intervention. The F1-scores, which 

balance precision and recall, confirm the overall 

robustness of the model, ensuring it performs consistently 

well across different pest categories. 

b. Overfitting and underfitting 

During training, the model initially showed significant 

improvement in both training and validation accuracy, but 

beyond a certain point, the validation accuracy plateaued 

while training accuracy continued to rise, indicating 

potential overfitting. To mitigate this, early stopping, 

dropout layers, and regularization techniques were 

employed. These measures were effective in preventing 

the model from overfitting to the training data, thereby 

enhancing its generalization capabilities when applied to 

unseen test data. 

c. Misclassification analysis 

The confusion matrix and the Grad-CAM visualizations 

provide deeper insights into the model's decision-making 

process and areas of misclassification. Misclassifications 

between visually similar classes, such as caterpillars and 

beetles or slugs and snails, highlight the model's current 

limitations. These errors can be attributed to the 

overlapping visual features that these classes share, which 

can confuse the model. Addressing these 

misclassifications would require additional training data 

with more distinct features for these categories or further 

refinement of the model's architecture to better capture 

subtle differences. 

d. Practical implications 

The practical implications of this research are 

substantial. The high accuracy and reliability of the model 

suggest that it can be effectively integrated into automated 

pest detection systems in agricultural settings. By 

providing farmers with a tool that can accurately identify 

pests in real-time, it enables early intervention and more 

efficient pest management strategies. This can lead to 

significant reductions in crop damage, improved yields, 

and more sustainable farming practices. 

e. Limitations  

Despite its high performance, the model has some 

limitations that need to be addressed. The dataset, while 

comprehensive, may still lack sufficient diversity to 

capture all variations of pest appearances in different 

environmental conditions. Future work should focus on 

expanding the dataset to include a broader range of 

images, covering different pest life stages and varying 

environmental contexts. Additionally, further refinement 

of the model's architecture and hyperparameters could 

enhance its performance, particularly in reducing 

misclassifications. 

The integration of more advanced techniques, such as 

ensemble learning or transfer learning from other well-
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established models, could also be explored to improve the 

model's accuracy and robustness. Furthermore, the 

development of user-friendly interfaces and deployment 

mechanisms will be essential for practical field 

applications, ensuring that the technology is accessible 

and beneficial to end-users such as farmers and 

agricultural technicians. 

f. Integration with previous research 

The findings of this study align with and extend the 

existing body of research on pest detection and 

management. Previous studies, such as those by Dong et 

al. (2022) and Wen et al. (2022), have highlighted the 

potential of convolutional neural networks (CNNs) in 

improving pest detection accuracy. This study builds upon 

these foundations by integrating the EfficientNetV2-L 

model, which demonstrates higher training speed and 

parameter efficiency, with Grad-CAM, which enhances 

interpretability. The combined approach not only 

improves model performance but also provides valuable 

visual insights, addressing the interpretability challenge 

often associated with CNNs. 

By enhancing the accuracy and transparency of pest 

detection systems, this research supports sustainable 

farming practices and contributes to broader goals of food 

security and agricultural productivity. Future work should 

continue to explore and refine these approaches, ensuring 

that the benefits of advanced artificial intelligence 

techniques are fully realized in real-world agricultural 

settings. 

4. Conclusion and future work 

This study demonstrated the efficacy of the 

EfficientNetV2-L model, augmented with Grad-CAM 

visualization techniques, in accurately classifying 

agricultural pests. The model achieved a high overall 

accuracy of 88%, indicating its potential as a reliable tool 

for pest detection in real-world agricultural settings. High 

precision, recall, and F1-scores across various pest 

categories underscore the model's robustness and 

effectiveness in distinguishing between different types of 

pests, thereby facilitating timely and accurate pest 

management. The integration of Grad-CAM provided 

valuable insights into the decision-making process of the 

model, enhancing interpretability and enabling the 

identification of critical image regions influencing the 

model's predictions. This transparency is crucial for 

gaining trust from end-users and for further refining the 

model based on real-world feedback. 

While the current study has achieved significant 

milestones, several avenues for future research and 

improvements remain. Future work should focus on 

expanding the dataset to include a more diverse range of 

images, encompassing different environmental 

conditions, various pest life stages, and diverse 

agricultural contexts. A larger and more varied dataset 

will help the model generalize better and improve its 

performance on unseen data. The analysis revealed areas 

where the model struggled, particularly in distinguishing 

between visually similar pests. Future efforts should 

explore methods to enhance the model's discriminatory 

power, such as fine-tuning the feature extraction layers or 

incorporating additional contextual information. 

Investigating the use of advanced model architectures 

and techniques, such as ensemble learning or transfer 

learning from other well-established models, could further 

enhance the model's accuracy and robustness. Combining 

multiple models or leveraging pre-trained networks may 

provide additional performance gains. For practical 

applications, it is essential to develop user-friendly 

interfaces and efficient deployment mechanisms. This 

includes creating mobile applications or integrating the 

model into existing agricultural management systems to 

facilitate real-time pest detection and monitoring. 

Conducting extensive field tests and gathering feedback 

from end users, such as farmers and agricultural 

technicians, will be crucial for refining the model and 

ensuring its practical utility. Real-world testing can 

highlight additional challenges and areas for improvement 

that are not obvious in controlled environments. Future 

research should also consider the ethical and 

environmental implications of deploying such 

technologies. Ensuring data privacy, minimizing the 

technological footprint, and promoting sustainable 

agricultural practices are important aspects to address. By 

pursuing these future research directions, the potential of 

AI-driven pest detection can be fully realized, leading to 

more effective, sustainable, and efficient agricultural 

practices. The findings of this study lay a strong 

foundation for further advancements in this field, 

ultimately contributing to improved food security and 

agricultural productivity. 
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